#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct Edge { int src, dst; CostType cost; Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {} inline bool operator<(const Edge &x) const { return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src; } inline bool operator<=(const Edge &x) const { return !(x < *this); } inline bool operator>(const Edge &x) const { return x < *this; } inline bool operator>=(const Edge &x) const { return !(*this < x); } }; template CostType girth_in_directed_graph(const std::vector>> &graph) { int n = graph.size(); CostType res = -1; std::vector dist(n); std::priority_queue, std::vector>, std::greater>> que; for (int root = 0; root < n; ++root) { std::fill(dist.begin(), dist.end(), -1); dist[root] = 0; for (const Edge &e : graph[root]) { if (e.dst == root) { if (res == -1 || e.cost < res) res = e.cost; } else { que.emplace(e); } } while (!que.empty()) { Edge edge = que.top(); que.pop(); if (dist[edge.dst] != -1) { if (edge.dst == root && (res == -1 || dist[edge.src] + edge.cost < res)) res = dist[edge.src] + edge.cost; continue; } dist[edge.dst] = dist[edge.src] + edge.cost; for (const Edge &e : graph[edge.dst]) { if (dist[e.dst] != -1) { if (e.dst == root && (res == -1 || dist[edge.dst] + e.cost < res)) res = dist[edge.dst] + e.cost; } else { que.emplace(e); } } } } return res; } template CostType girth_in_undirected_graph(int n, const std::vector> &edges) { int m = edges.size(); std::vector> graph(n); for (int i = 0; i < m; ++i) { graph[edges[i].src].emplace_back(i); graph[edges[i].dst].emplace_back(i); } std::vector used(m, false); std::vector dist(n); using P = std::pair; std::priority_queue, std::function> que( [&](const P &a, const P &b) { const Edge &a_edge = edges[a.first], &b_edge = edges[b.first]; return a_edge.cost != b_edge.cost ? a_edge.cost > b_edge.cost : a_edge.dst != b_edge.dst ? a_edge.dst > b_edge.dst : a_edge.src > b_edge.src; } ); CostType res = -1; for (int root = 0; root < n; ++root) { std::fill(used.begin(), used.end(), false); std::fill(dist.begin(), dist.end(), -1); dist[root] = 0; for (int id : graph[root]) { int dst = edges[id].src == root ? edges[id].dst : edges[id].src; if (dst != root) que.emplace(id, dst); } while (!que.empty()) { int id, dst; std::tie(id, dst) = que.top(); que.pop(); if (dist[dst] != -1) continue; int src = edges[id].dst == dst ? edges[id].src : edges[id].dst; dist[dst] = dist[src] + edges[id].cost; used[id] = true; for (int e : graph[dst]) { int nx = edges[e].src == dst ? edges[e].dst : edges[e].src; if (dist[nx] == -1) que.emplace(e, nx); } } for (int i = 0; i < m; ++i) { if (!used[i] && dist[edges[i].src] != -1 && dist[edges[i].dst] != -1) { CostType loop = dist[edges[i].src] + dist[edges[i].dst] + edges[i].cost; if (res == -1 || loop < res) res = loop; } } } return res; } int main() { int t, n, m; cin >> t >> n >> m; if (t == 0) { vector> edges; while (m--) { int u, v, w; cin >> u >> v >> w; --u; --v; edges.emplace_back(u, v, w); } cout << girth_in_undirected_graph(n, edges) << '\n'; } else if (t == 1) { vector>> graph(n); while (m--) { int u, v, w; cin >> u >> v >> w; --u; --v; graph[u].emplace_back(u, v, w); } cout << girth_in_directed_graph(graph) << '\n'; } return 0; }