/** * date : 2020-12-20 18:51:41 */ #define NDEBUG using namespace std; // intrinstic #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template using V = vector; template using VV = vector>; using vi = vector; using vl = vector; using vd = V; using vs = V; using vvi = vector>; using vvl = vector>; template struct P : pair { template P(Args... args) : pair(args...) {} using pair::first; using pair::second; T &x() { return first; } const T &x() const { return first; } U &y() { return second; } const U &y() const { return second; } P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } }; using pl = P; using pi = P; using vp = V; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template int sz(const T &t) { return t.size(); } template void mem(T (&a)[N], int c) { memset(a, c, sizeof(T) * N); } template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template pair mkp(const T &t, const U &u) { return make_pair(t, u); } template vector mkrui(const vector &v, bool rev = false) { vector ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector reord(const vector &v, const vector &ord) { int N = v.size(); vector ret(N); for (int i = 0; i < N; i++) ret[i] = v[ord[i]]; return ret; }; template vector mkiota(int N) { vector ret(N); iota(begin(ret), end(ret), 0); return ret; } template vector mkinv(vector &v, int max_val = -1) { if (max_val < (int)v.size()) max_val = v.size() - 1; vector inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } __attribute__((target("bmi"))) inline int lsb(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("bmi"))) inline int ctz(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int msb(const u64 &a) { return 63 - _lzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int clz64(const u64 &a) { return _lzcnt_u64(a); } template inline int gbit(const T &a, int i) { return (a >> i) & 1; } template inline void sbit(T &a, int i, bool b) { a ^= (gbit(a, i) == b ? 0 : (T(b) << i)); } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } void in() {} template void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template void outr(const T &t, const U &... u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug namespace DebugImpl { template struct is_specialize : false_type {}; template struct is_specialize< U, typename conditional::type> : true_type {}; template struct is_specialize< U, typename conditional::type> : true_type {}; template struct is_specialize::value, void>> : true_type { }; void dump(const char& t) { cerr << t; } void dump(const string& t) { cerr << t; } template ::value, nullptr_t> = nullptr> void dump(const U& t) { cerr << t; } template void dump(const T& t, enable_if_t::value>* = nullptr) { string res; if (t == Nyaan::inf) res = "inf"; if (is_signed::value) if (t == -Nyaan::inf) res = "-inf"; if (sizeof(T) == 8) { if (t == Nyaan::infLL) res = "inf"; if (is_signed::value) if (t == -Nyaan::infLL) res = "-inf"; } if (res.empty()) res = to_string(t); cerr << res; } template void dump(const pair&); template void dump(const pair&); template void dump(const T& t, enable_if_t::value>* = nullptr) { cerr << "[ "; for (auto it = t.begin(); it != t.end();) { dump(*it); cerr << (++it == t.end() ? "" : ", "); } cerr << " ]"; } template void dump(const pair& t) { cerr << "( "; dump(t.first); cerr << ", "; dump(t.second); cerr << " )"; } template void dump(const pair& t) { cerr << "[ "; for (int i = 0; i < t.second; i++) { dump(t.first[i]); cerr << (i == t.second - 1 ? "" : ", "); } cerr << " ]"; } void trace() { cerr << endl; } template void trace(Head&& head, Tail&&... tail) { cerr << " "; dump(head); if (sizeof...(tail) != 0) cerr << ","; trace(forward(tail)...); } } // namespace DebugImpl #ifdef NyaanDebug #define trc(...) \ do { \ cerr << "## " << #__VA_ARGS__ << " = "; \ DebugImpl::trace(__VA_ARGS__); \ } while (0) #else #define trc(...) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define repc(i, a, cond) for (long long i = (a); (cond); i++) #define enm(i, val, vec) \ for (long long i = 0; i < (long long)(vec).size(); i++) \ if (auto& val = vec[i]; false) \ ; \ else #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // namespace HashMapImpl { using u32 = uint32_t; using u64 = uint64_t; template struct HashMapBase; template struct itrB : iterator { using base = iterator; using ptr = typename base::pointer; using ref = typename base::reference; u32 i; HashMapBase* p; explicit constexpr itrB() : i(0), p(nullptr) {} explicit constexpr itrB(u32 _i, HashMapBase* _p) : i(_i), p(_p) {} explicit constexpr itrB(u32 _i, const HashMapBase* _p) : i(_i), p(const_cast*>(_p)) {} friend void swap(itrB& l, itrB& r) { swap(l.i, r.i), swap(l.p, r.p); } friend bool operator==(const itrB& l, const itrB& r) { return l.i == r.i; } friend bool operator!=(const itrB& l, const itrB& r) { return l.i != r.i; } const ref operator*() const { return const_cast*>(p)->data[i]; } ref operator*() { return p->data[i]; } ptr operator->() const { return &(p->data[i]); } itrB& operator++() { assert(i != p->cap && "itr::operator++()"); do { i++; if (i == p->cap) break; if (p->flag[i] == true && p->dflag[i] == false) break; } while (true); return (*this); } itrB operator++(int) { itrB it(*this); ++(*this); return it; } itrB& operator--() { do { i--; if (p->flag[i] == true && p->dflag[i] == false) break; assert(i != 0 && "itr::operator--()"); } while (true); return (*this); } itrB operator--(int) { itrB it(*this); --(*this); return it; } }; template struct HashMapBase { using u32 = uint32_t; using u64 = uint64_t; using iterator = itrB; using itr = iterator; protected: template ::value, nullptr_t> = nullptr, enable_if_t::value, nullptr_t> = nullptr> inline u32 inner_hash(const K& key) const { return u32((u64(key ^ r) * 11995408973635179863ULL) >> shift); } template < typename K, enable_if_t::value, nullptr_t> = nullptr, enable_if_t::value, nullptr_t> = nullptr, enable_if_t::value, nullptr_t> = nullptr> inline u32 inner_hash(const K& key) const { u64 a = key.first ^ r; u64 b = key.second ^ r; a *= 11995408973635179863ULL; b *= 10150724397891781847ULL; return u32((a + b) >> shift); } template ::value, nullptr_t> = nullptr> inline u32 hash(const D& dat) const { return inner_hash(dat); } template < typename D = Data, enable_if_t::value, nullptr_t> = nullptr> inline u32 hash(const D& dat) const { return inner_hash(dat.first); } template ::value, nullptr_t> = nullptr> inline Key dtok(const D& dat) const { return dat; } template < typename D = Data, enable_if_t::value, nullptr_t> = nullptr> inline Key dtok(const D& dat) const { return dat.first; } void reallocate(u32 ncap) { vector ndata(ncap); vector nf(ncap); shift = 64 - __lg(ncap); for (u32 i = 0; i < cap; i++) { if (flag[i] == true && dflag[i] == false) { u32 h = hash(data[i]); while (nf[h]) h = (h + 1) & (ncap - 1); ndata[h] = data[i]; nf[h] = true; } } data.swap(ndata); flag.swap(nf); cap = ncap; dflag.resize(cap); fill(std::begin(dflag), std::end(dflag), false); } inline bool extend_rate(u32 x) const { return x * 2 >= cap; } inline bool shrink_rate(u32 x) const { return HASHMAP_DEFAULT_SIZE < cap && x * 10 <= cap; } inline void extend() { reallocate(cap << 1); } inline void shrink() { reallocate(cap >> 1); } public: u32 cap, s; vector data; vector flag, dflag; u32 shift; static u64 r; static constexpr uint32_t HASHMAP_DEFAULT_SIZE = 4; explicit HashMapBase() : cap(HASHMAP_DEFAULT_SIZE), s(0), data(cap), flag(cap), dflag(cap), shift(64 - __lg(cap)) {} itr begin() const { u32 h = 0; while (h != cap) { if (flag[h] == true && dflag[h] == false) break; h++; } return itr(h, this); } itr end() const { return itr(this->cap, this); } friend itr begin(const HashMapBase& h) { return h.begin(); } friend itr end(const HashMapBase& h) { return h.end(); } itr find(const Key& key) const { u32 h = inner_hash(key); while (true) { if (flag[h] == false) return this->end(); if (dtok(data[h]) == key) { if (dflag[h] == true) return this->end(); return itr(h, this); } h = (h + 1) & (cap - 1); } } bool contain(const Key& key) const { return find(key) != this->end(); } itr insert(const Data& d) { u32 h = hash(d); while (true) { if (flag[h] == false) { if (extend_rate(s + 1)) { extend(); h = hash(d); continue; } data[h] = d; flag[h] = true; ++s; return itr(h, this); } if (dtok(data[h]) == dtok(d)) { if (dflag[h] == true) { data[h] = d; dflag[h] = false; ++s; } return itr(h, this); } h = (h + 1) & (cap - 1); } } // tips for speed up : // if return value is unnecessary, make argument_2 false. itr erase(itr it, bool get_next = true) { if (it == this->end()) return this->end(); s--; if (shrink_rate(s)) { Data d = data[it.i]; shrink(); it = find(dtok(d)); } int ni = (it.i + 1) & (cap - 1); if (this->flag[ni]) { this->dflag[it.i] = true; } else { this->flag[it.i] = false; } if (get_next) ++it; return it; } itr erase(const Key& key) { return erase(find(key)); } bool empty() const { return s == 0; } int size() const { return s; } void clear() { fill(std::begin(flag), std::end(flag), false); fill(std::begin(dflag), std::end(dflag), false); s = 0; } void reserve(int n) { if (n <= 0) return; n = 1 << min(23, __lg(n) + 2); if (cap < u32(n)) reallocate(n); } }; template uint64_t HashMapBase::r = chrono::duration_cast( chrono::high_resolution_clock::now().time_since_epoch()) .count(); } // namespace HashMapImpl /** * @brief Hash Map(base) (ハッシュマップ・基底クラス) */ template struct HashMap : HashMapImpl::HashMapBase> { using base = typename HashMapImpl::HashMapBase>; using HashMapImpl::HashMapBase>::HashMapBase; using Data = pair; Val& operator[](const Key& k) { typename base::u32 h = base::inner_hash(k); while (true) { if (base::flag[h] == false) { if (base::extend_rate(base::s + 1)) { base::extend(); h = base::hash(k); continue; } base::data[h].first = k; base::data[h].second = Val(); base::flag[h] = true; ++base::s; return base::data[h].second; } if (base::data[h].first == k) { if (base::dflag[h] == true) base::data[h].second = Val(); return base::data[h].second; } h = (h + 1) & (base::cap - 1); } } typename base::itr emplace(const Key& key, const Val& val) { return base::insert(Data(key, val)); } }; /* * @brief ハッシュマップ(連想配列) * @docs docs/hashmap/hashmap.md **/ pair, vector> pi_table(long long N) { using i64 = long long; vector ns{0}; for (i64 i = N; i > 0; i = N / (N / i + 1)) ns.push_back(i); vector h(ns); for (auto &x : h) --x; for (i64 x = 2, sq = sqrtl(N), nsz = ns.size(); x <= sq; ++x) { if (h[nsz - x] == h[nsz - x + 1]) continue; i64 x2 = x * x, pi = h[nsz - x + 1]; for (i64 i = 1, n = ns[i]; i < nsz && n >= x2; n = ns[++i]) h[i] -= h[i * x <= sq ? i * x : nsz - n / x] - pi; } return {ns, h}; } long long prime_counting(long long N) { if (N < 2) return 0; return pi_table(N).second[1]; } /** * @brief 素数カウント( $\mathrm{O}(\frac{N^{\frac{3}{4}}}{\log N})$ ) * @docs docs/multiplicative-function/prime-counting.md */ namespace inner { using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; template T gcd(T a, T b) { while (b) swap(a %= b, b); return a; } template T inv(T a, T p) { T b = p, x = 1, y = 0; while (a) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } template T modpow(T a, U n, T p) { T ret = 1 % p; for (; n; n >>= 1, a = U(a) * a % p) if (n & 1) ret = U(ret) * a % p; return ret; } } // namespace inner namespace my_rand { // [0, 2^64 - 1) uint64_t rng() { static uint64_t x_ = uint64_t(chrono::duration_cast( chrono::high_resolution_clock::now().time_since_epoch()) .count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } // [l, r) int64_t randint(int64_t l, int64_t r) { assert(l < r); return l + rng() % (r - l); } // choose n numbers from [l, r) without overlapping vector randset(int64_t l, int64_t r, int64_t n) { assert(l <= r && n <= r - l); unordered_set s; for (int64_t i = n; i; --i) { int64_t m = randint(l, r + 1 - i); if (s.find(m) != s.end()) m = r - i; s.insert(m); } vector ret; for (auto& x : s) ret.push_back(x); return ret; } // [0.0, 1.0) double rnd() { union raw_cast { double t; uint64_t u; }; constexpr uint64_t p = uint64_t(1023 - 64) << 52; return rng() * ((raw_cast*)(&p))->t; } template void randshf(vector& v) { int n = v.size(); for (int loop = 0; loop < 2; loop++) for (int i = 0; i < n; i++) swap(v[i], v[randint(0, n)]); } } // namespace my_rand using my_rand::randint; using my_rand::randset; using my_rand::randshf; using my_rand::rnd; using my_rand::rng; struct ArbitraryLazyMontgomeryModInt { using mint = ArbitraryLazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static u32 mod; static u32 r; static u32 n2; static u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u32 m) { assert(m < (1 << 30)); assert((m & 1) == 1); mod = m; n2 = -u64(m) % m; r = get_r(); assert(r * mod == 1); } u32 a; ArbitraryLazyMontgomeryModInt() : a(0) {} ArbitraryLazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = ArbitraryLazyMontgomeryModInt(t); return (is); } mint inverse() const { return pow(mod - 2); } u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u32 get_mod() { return mod; } }; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2; struct montgomery64 { using mint = montgomery64; using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } u64 a; montgomery64() : a(0) {} montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){}; static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } mint &operator+=(const mint &b) { if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i64(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u128(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u128 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = montgomery64(t); return (is); } mint inverse() const { return pow(mod - 2); } u64 get() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u64 get_mod() { return mod; } }; typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2; namespace fast_factorize { using u64 = uint64_t; template bool miller_rabin(u64 n, vector as) { if (mint::get_mod() != n) mint::set_mod(n); u64 d = n - 1; while (~d & 1) d >>= 1; mint e{1}, rev{int64_t(n - 1)}; for (u64 a : as) { if (n <= a) break; u64 t = d; mint y = mint(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(u64 n) { if (~n & 1) return n == 2; if (n <= 1) return false; if (n < (1LL << 30)) return miller_rabin(n, {2, 7, 61}); else return miller_rabin( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd_ = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd_(), y = rnd_(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = inner::gcd(q.get(), n); } } if (g == n) do g = inner::gcd((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } vector inner_factorize(u64 n) { if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) p = pollard_rho(n); else p = pollard_rho(n); if (p == n) return {p}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } using i64 = int64_t; map factor_count(u64 n) { map mp; for (auto &x : factorize(n)) mp[x]++; return mp; } vector divisors(u64 n) { if (n == 0) return {}; vector> v; for (auto &p : factor_count(n)) v.push_back(p); vector ret; auto f = [&](auto rec, int i, u64 x) -> void { if (i == (int)v.size()) { ret.push_back(x); return; } for (int j = v[i].second;; --j) { rec(rec, i + 1, x); if (j == 0) break; x *= v[i].first; } }; f(f, 0, 1); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::divisors; using fast_factorize::factor_count; using fast_factorize::factorize; using fast_factorize::is_prime; /** * @brief 高速素因数分解(Miller Rabin/Pollard's Rho) * @docs docs/prime/fast-factorize.md */ // Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...} vector prime_enumerate(int N) { vector sieve(N / 3 + 1, 1); for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) { if (!sieve[i]) continue; for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p, qe = sieve.size(); q < qe; q += r = s - r) sieve[q] = 0; } vector ret{2, 3}; for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++) if (sieve[i]) ret.push_back(p); while (!ret.empty() && ret.back() > N) ret.pop_back(); return ret; } // Prime -> {0, 0, 1, 1, 0, 1, 0, 1, ...} vector prime_sieve(int N) { vector sieve(max(1, N) + 1, 1); sieve[0] = sieve[1] = false; for (int i = 2; i * i <= N; i++) if (sieve[i] == true) for (int j = i * i; j <= N; j += i) sieve[j] = false; return sieve; } // using namespace Nyaan; // 関連(?):dfsを使用した乗法的関数のprefix sumの計算 // http://baihacker.github.io/main/2020/The_prefix-sum_of_multiplicative_function_the_black_algorithm.html using i64 = long long; i64 N, ans; vector ps; HashMap Pi; i64 fast_div(i64 a, i64 b) { return double(a) / b; } void init() { i64 sq = sqrt(N); assert(N > 0); ans = 0; // ps auto prime = prime_enumerate(sq + 10); for (auto& x : prime) ps.push_back(x); // Pi auto&& [ns, _pi] = pi_table(N); trc(ns, _pi); i64 s = sz(ns); for (int i = 1; i < s; i++) { Pi[ns[i]] = _pi[i]; if (Pi.find(i + 1) == Pi.end()) Pi[ns[i] + 1] = _pi[i] + is_prime(ns[i] + 1); } } /** * 現在n = (v * ps[i] ^ c)のノードにいる * tot = totient(n) */ void dfs(int i, int c, i64 tot) { // v * ps[i] ^ (c + 1)を処理 ans++; // ps[i]倍の子に進んで良ければ進む if (tot * ps[i] * ps[i] <= N) dfs(i, c + 1, tot * ps[i]); // ps[i+1]倍~上限の子を計算 // 上限は? -> (N / tot) + 1以下 assert(Pi.find(ps[i]) != Pi.end()); assert(Pi.find(N / tot + 1) != Pi.end()); ans += Pi[N / tot + 1] - Pi[ps[i]]; // 進んでよいノードに進む for (int j = i + 1; j < (int)ps.size(); j++) { if (tot * (ps[j] - 1) * ps[j] > N) break; dfs(j, 1, tot * (ps[j] - 1)); } } i64 run() { // 1の場合 ans = 1; // 素数の場合を考えると? -> N + 1以下の素数がオーケー ans += Pi[N + 1]; // 各素数を根としてDFSを開始する for (int i = 0; i < (int)ps.size(); i++) { i64 p = ps[i]; // tot(p^2) if (p * (p - 1) >= N) break; dfs(i, 1, p - 1); } return ans; } void Nyaan::solve() { in(N); init(); out(run()); }