#include #pragma GCC target("avx2") #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") //#include using namespace std; //using namespace boost::multiprecision; //#include #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #include #include namespace atcoder { template struct segtree { public: segtree() : segtree(0) {} segtree(int n) : segtree(std::vector(n, e())) {} segtree(const std::vector& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } template int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template int max_right(int l, F f) { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template int min_left(int r, F f) { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; } // namespace atcoder using namespace atcoder; using dou =long double; string yes="yes"; string Yes="Yes"; string YES="YES"; string no="no"; string No="No"; string NO="NO"; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } typedef long long ll; typedef unsigned long long ull; typedef pair P; typedef pair PL; //ll mod = 998244353ll; ll mod = 1000000007ll; //const ll mod = 4; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime modhttps://atcoder.jp/contests/abc166/submit?taskScreenName=abc166_f mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, const mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} #define rep(i, n) for(ll i = 0; i < (ll)(n); i++) //#define rep(i, n) for(int i = 0; i < (int)(n); i++) #define brep(n) for(int bit=0;bit<(1<= (ll)0ll; i--) #define rrep(i,m,n) for(ll i = m; i < (ll)(n); i++) #define reprep(i,j,h,w) rep(i,h)rep(j,w) #define repreprep(i,j,k,h,w,n) rep(i,h)rep(j,w)rep(k,n) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define VEC(type,name,n) std::vector name(n);rep(i,n)std::cin >> name[i]; #define pb push_back #define pf push_front #define query int qq;std::cin >> qq;rep(qqq,qq) #define lb lower_bound #define ub upper_bound #define fi first #define se second #define itn int #define mp make_pair //#define sum(a) accumulate(all(a),0ll) #define keta fixed< > name(m,vector (n,a)) //#define vvector(name,typ,m,n)vector > name(m,vector (n)) #define vvvector(name,t,l,m,n,a) vector > > name(l, vector >(m, vector(n,a))); #define vvvvector(name,t,k,l,m,n,a) vector > > > name(k,vector > >(l, vector >(m, vector(n,a)) )); //#define case std::cout <<"Case #" <> a>>b;a--;b--; #define popcount __builtin_popcount #define permu(a) next_permutation(all(a)) //#define aru(a,d) a.find(d)!=a.end() #define nai(a,d) a.find(d)==a.end() //#define aru p.find(mp(x,y))!=p.end() //#define grid_input(a,type) int h,w;std::cin >> h>>w;vvector(a,type,h,w,0);reprep(i,j,h,w)std::cin >> a[i][j]; //typedef long long T; ll ceili(ll a,ll b){ return ((a+b-1)/b); } const int INF = 2000000000; //const ll INF64 =922330720854775807ll; const ll INF64 = 4223372036854775807ll; //const ll INF64 = 9223372036854775807ll; //const ll INF64 = 243'000'000'000'000'000'0;Q const ll MOD = 1000000007ll; //const ll MOD = 998244353ll; //const ll MOD = 1000003ll; const ll OD = 1000000000000007ll; const dou pi=3.141592653589793; long long modpow(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % MOD; a = a * a % MOD; n >>= 1; } return res; } vector< ll > divisor(ll n) { //約数の列挙 vector< ll > ret; for(ll i = 1; i * i <= n; i++) { if(n % i == 0) { ret.push_back(i); if(i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return (ret); } //メモ //ゲーム(Grundy数とか)の復習をする //リスニング力をどうにかする //個数制限付きナップサックの復習 //戻すDP //全方位木DPとスライド最小値 //ゲーム→パリティに注目するといいことあるかも //ゲーム→もとの状態に戻せる状態を探す //理由がなければLLを使え! //理由がなければLLを使え! //理由がなければLLを使え! //理由がなければLLを使え! //理由がなければLLを使え! //理由がなければLLを使え! //理由がなければLLを使え! //理由がなければLLを使え! //来週の月曜日に銀行へ行く //積率を調べる実験を来週の火曜日までにやる //レピュニット数 //フェルマーの小定理 //拡張ユークリッド int op(int a,int b){ return min(a,b); } int e(){ return INF; } int main(){ int n,q; std::cin >> n>>q; VEC(int,a,n); erep(i,a)i--; segtrees(a); std::vector p(n); rep(i,n)p[a[i]]=i; rep(iqq,q){ int d,l,r; std::cin >> d>>l>>r; l--;r--; if(d==1){ int v=s.get(l); int vv=s.get(r); swap(p[v],p[vv]); s.set(l,vv); s.set(r,v); } if(d==2){ int m=s.prod(l,r+1); // ppri(m,p[m]); std::cout << p[m]+1 << std::endl; } //vout(p); } }