#include using namespace std; using LL = long long int; #define incII(i, l, r) for(LL i = (l) ; i <= (r); i++) #define incIX(i, l, r) for(LL i = (l) ; i < (r); i++) #define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++) #define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++) #define decII(i, l, r) for(LL i = (r) ; i >= (l); i--) #define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--) #define decXI(i, l, r) for(LL i = (r) ; i > (l); i--) #define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--) #define inc(i, n) incIX(i, 0, n) #define dec(i, n) decIX(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); }; auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); }; auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); }; auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); }; auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(c) c.begin(), c.end() #define RALL(c) c.rbegin(), c.rend() #define RV(c) reverse(ALL(c)) #define SC static_cast #define SI(c) SC(c.size()) #define SL(c) SC(c.size()) #define RF(e, c) for(auto & e: c) #define SF(c, ...) for(auto & [__VA_ARGS__]: c) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) auto * IS = & cin; auto * OS = & cout; array SEQ = { "", " ", "" }; // input template T in() { T a; (* IS) >> a; return a; } // input: tuple template void tin_(istream & is, U & t) { if constexpr(I < tuple_size::value) { is >> get(t); tin_(is, t); } } template istream & operator>>(istream & is, tuple & t) { tin_<0>(is, t); return is; } template auto tin() { return in>(); } // input: array template istream & operator>>(istream & is, array & a) { RF(e, a) { is >> e; } return is; } template auto ain() { return in>(); } // input: multi-dimensional vector template T vin() { T v; (* IS) >> v; return v; } template auto vin(N n, M ... m) { vector(m ...))> v(n); inc(i, n) { v[i] = vin(m ...); } return v; } // input: multi-column (tuple) template void colin_([[maybe_unused]] U & t) { } template void colin_(U & t) { get(t).PB(in()); colin_(t); } template auto colin(int n) { tuple ...> t; inc(i, n) { colin_ ...>, 0, T ...>(t); } return t; } // output void out_([[maybe_unused]] string s) { } template void out_([[maybe_unused]] string s, A && a) { (* OS) << a; } template void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); } auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; }; auto out = [](auto ... a) { outF("", " " , "\n", a ...); }; auto outS = [](auto ... a) { outF("", " " , " " , a ...); }; auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); }; auto outN = [](auto ... a) { outF("", "" , "" , a ...); }; // output: multi-dimensional vector template ostream & operator<<(ostream & os, vector const & v) { os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]); } template void vout_(T && v) { (* OS) << v; } template void vout_(T && v, A a, B ... b) { inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); } } template void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; } template void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; } // ---- ---- #include #include #include #include #include namespace atcoder { template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; } // namespace atcoder using namespace atcoder; int main() { auto [n, m] = ain(); mcf_graph g(n); inc(i, m) { auto [a, b, c, d] = ain(); a--; b--; g.add_edge(a, b, 1, c); g.add_edge(b, a, 1, c); g.add_edge(a, b, 1, d); g.add_edge(b, a, 1, d); } out(g.flow(0, n - 1, 2).SE); }