class segment_tree_dual: def __init__(self, N, compose, funcval, ID_M=None): self.compose = compose self.ID_M = ID_M self.funcval = funcval self.height = (N-1).bit_length() #木の段数 self.N0 = 1<= N self.laz = [self.ID_M]*(2*self.N0) #作用素の木 self.val = None #値の配列 #初期値の配列を作る def build(self,initial): self.val = initial[:] #laz[k] を子に伝える、k が一番下の場合は laz[k] を val に反映する def propagate(self,k): if self.laz[k] == self.ID_M: return; if self.N0 <= k: self.val[k-self.N0] = self.funcval(self.val[k-self.N0], self.laz[k]) self.laz[k] = self.ID_M else: self.laz[(k<<1) ] = self.compose(self.laz[(k<<1) ],self.laz[k]); self.laz[(k<<1)+1] = self.compose(self.laz[(k<<1)+1],self.laz[k]); self.laz[k] = self.ID_M; # 遅延をすべて解消する def propagate_all(self): upto = self.N0 + len(self.val) for i in range(1,upto): self.propagate(i) # laz[k]およびその上に位置する作用素をすべて伝播 def thrust(self,k): for i in range(self.height,-1,-1): self.propagate(k>>i) # 区間[l,r]に関数 f を作用 def update(self, L,R,f): L += self.N0; R += self.N0+1 """まず伝播させる(オペレータが可換なら必要ない)""" #self.thrust(L) #self.thrust(R-1) #登りながら関数 f を合成 while L < R: if R & 1: R -= 1 self.laz[R] = self.compose(self.laz[R],f) if L & 1: self.laz[L] = self.compose(self.laz[L],f) L += 1 L >>= 1; R >>= 1 # values[k] を取得。 def point_get(self, k): res = self.val[k] k += self.N0 while k: if self.laz[k] != self.ID_M: res = self.funcval(res, self.laz[k]) k //= 2 return res # values[k] = x 代入する def point_set(self, k): self.thrust(k+self.N0) self.val[k] = x n = int(input()) *a, = map(int,input().split()) d = {} for i,ai in enumerate(a): if ai in d: d[ai].append(i) else: d[ai] = [i] seg = segment_tree_dual(n, max, max, ID_M=0) seg.build([0]*n) for k,lst in sorted(d.items()): lst.sort() seg.update(lst[0],lst[-1],k) seg.propagate_all() print(*seg.val)