using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Text;
using System.Linq;
using E = System.Linq.Enumerable;
using System.Threading;
internal partial class Solver {
    public void Run() {
        var n = ni();
        var a = ni(n);
        // 1*xC0 + 2*xC1 + 3*xC2 ... n*xCn-1= 2^(x-1)*x
        var mod = ModInt.SetMod998244353();
        var b = new Binomial(100000, mod);
        ModInt ans = 0;
        for (int i = 0; i < n; i++) {
            int k = n - (i + 1);
            ans += ModInt.Pow(2, k) * ModInt.Pow(2, i - 1) * (i + 2) * a[i];
        }
        cout.WriteLine(ans);
    }
}
public class Binomial {
    private readonly long[] factorial;
    private readonly long[] inverseFactorial;
    private readonly long[] inverse;
    private readonly int mod;
    public Binomial(int size, int primeMod) {
        size++;
        factorial = new long[size];
        inverseFactorial = new long[size];
        inverse = new long[size];
        mod = primeMod;
        Setup(size);
    }
    private void Setup(int size) {
        factorial[0] = factorial[1] = 1;
        inverseFactorial[0] = inverseFactorial[1] = 1;
        inverse[1] = 1;
        for (int i = 2; i < size; i++) {
            factorial[i] = factorial[i - 1] * i % mod;
            inverse[i] = (mod - (mod / i) * inverse[mod % i] % mod);
            inverseFactorial[i] = inverseFactorial[i - 1] * inverse[i] % mod;
        }
    }
    public long C(int s, int t) {
        if (s < 0 || t < 0 || s < t) {
            return 0;
        }
        if (t == 0 || s == t) {
            return 1;
        }
        if (s >= mod) {
            return C(s % mod, t % mod) * C(s / mod, t / mod) % mod; // Lucas' theorem
        }
        return factorial[s] * inverseFactorial[t] % mod * inverseFactorial[s - t] % mod;
    }
    public long this[int s, int t] {
        get {
            return C(s, t);
        }
    }
    public long P(int s, int t) {
        if (s < 0 || t < 0 || s < t) return 0;
        return factorial[s] * inverseFactorial[s - t] % mod;
    }
    /// 
    /// s 種類のものから重複を許して t 個選ぶ場合の数
    /// 
    /// 
    public long H(int s, int t) {
        if (s < 0 || t < 0) return 0;
        if (s == 0 && t == 0) return 1;
        return C(s + t - 1, t);
    }
    public long H1(int s, int t) {
        return H(s, t - s);
    }
}
public partial struct ModInt : IEquatable {
    private static int mod = 0;
    private long _value;
    public ModInt(long x) {
        _value = x;
        Normalize();
    }
    private static long RegularMod(long x, int mod) {
        if (x >= mod) {
            if (x < 2 * mod) {
                return x - mod;
            }
            return x % mod;
        }
        if (x >= 0) {
            return x;
        }
        x = mod - RegularMod(-x, mod);
        return x == mod ? 0 : x;
    }
    public static int SetModValue(int m) {
        return mod = m;
    }
    public static int SetMod998244353() { return SetModValue(998244353); }
    public static int SetMod1000000007() { return SetModValue(1000000007); }
    private void Normalize() {
        _value = RegularMod(_value, mod);
    }
    public override string ToString() {
        return _value.ToString(CultureInfo.InvariantCulture);
    }
    public int ToInt() {
        return (int)_value;
    }
    public static bool operator ==(ModInt c1, ModInt c2) {
        return c1._value == c2._value;
    }
    public static bool operator !=(ModInt c1, ModInt c2) {
        return !(c1 == c2);
    }
    public static ModInt operator +(ModInt x, ModInt y) {
        return new ModInt(x._value + y._value);
    }
    public static ModInt operator -(ModInt x, ModInt y) {
        return new ModInt(x._value - y._value);
    }
    public static ModInt operator -(ModInt x) {
        return new ModInt(-x._value);
    }
    public static ModInt operator *(ModInt x, ModInt y) {
        return new ModInt(x._value * y._value);
    }
    public static ModInt operator /(ModInt x, ModInt y) {
        return new ModInt(x._value * Inverse(y._value, mod));
    }
    public static ModInt operator ++(ModInt x) {
        return x + 1;
    }
    public static ModInt operator --(ModInt x) {
        return x - 1;
    }
    public static ModInt Pow(ModInt x, long n) {
        if (n < 0) return new ModInt(1) / Pow(x, -n);
        ModInt r = 1;
        while (n > 0) {
            if ((n & 1) != 0) {
                r *= x;
            }
            x *= x;
            n >>= 1;
        }
        return r;
    }
    private static long ExtendedGcd(long a, long b, out long x, out long y) {
        if (b == 0) {
            x = 1; y = 0;
            return a;
        } else {
            var d = ExtendedGcd(b, a % b, out y, out x);
            y -= a / b * x;
            return d;
        }
    }
    private static long Inverse(long a, long mod) {
        long x = 0, y = 0;
        if (ExtendedGcd(a, mod, out x, out y) == 1) {
            return (x + mod) % mod;
        } else {
            throw new Exception("Invalid inverse " + a + " " + mod);
        }
    }
    public static implicit operator ModInt(long x) {
        return new ModInt(x);
    }
    public override bool Equals(object obj) {
        if (obj == null) {
            return false;
        }
        return _value.Equals(((ModInt)obj)._value);
    }
    public override int GetHashCode() {
        return _value.GetHashCode();
    }
    public bool Equals(ModInt other) {
        return _value.Equals(other._value);
    }
    object ToDump() { return _value; }
}
// PREWRITEN CODE BEGINS FROM HERE
static public class StringExtensions {
    static public string JoinToString(this IEnumerable source, string separator = " ") {
        return string.Join(separator, source);
    }
}
internal partial class Solver : Scanner {
    static readonly int? StackSizeInMebiByte = null; //50;
    public static void StartAndJoin(Action action, int maxStackSize) {
        var thread = new Thread(new ThreadStart(action), maxStackSize);
        thread.Start();
        thread.Join();
    }
    public static void Main() {
#if LOCAL
        byte[] inputBuffer = new byte[1000000];
        var inputStream = Console.OpenStandardInput(inputBuffer.Length);
        using (var reader = new StreamReader(inputStream, Console.InputEncoding, false, inputBuffer.Length)) {
            Console.SetIn(reader);
            new Solver(Console.In, Console.Out).Run();
        }
#else
        Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false });
        if (StackSizeInMebiByte.HasValue) {
            StartAndJoin(() => new Solver(Console.In, Console.Out).Run(), StackSizeInMebiByte.Value * 1024 * 1024);
        } else {
            new Solver(Console.In, Console.Out).Run();
        }
        Console.Out.Flush();
#endif
    }
#pragma warning disable IDE0052
    private readonly TextReader cin;
    private readonly TextWriter cout;
    private readonly TextWriter cerr;
#pragma warning restore IDE0052
    public Solver(TextReader reader, TextWriter writer)
        : base(reader) {
        cin = reader;
        cout = writer;
        cerr = Console.Error;
    }
    public Solver(string input, TextWriter writer)
        : this(new StringReader(input), writer) {
    }
#pragma warning disable IDE1006
#pragma warning disable IDE0051
    private int ni() { return NextInt(); }
    private int[] ni(int n) { return NextIntArray(n); }
    private long nl() { return NextLong(); }
    private long[] nl(int n) { return NextLongArray(n); }
    private double nd() { return NextDouble(); }
    private double[] nd(int n) { return NextDoubleArray(n); }
    private string ns() { return Next(); }
    private string[] ns(int n) { return NextArray(n); }
#pragma warning restore IDE1006
#pragma warning restore IDE0051
}
#if DEBUG
internal static class LinqPadExtension {
    public static string TextDump(this T obj) {
        if (obj is IEnumerable) return (obj as IEnumerable).Cast