import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } class MaxFlow(Capa, Capa wEPS = 0, Capa wINF = 10^^9) { int n, m; int[][] g; int[] zu; Capa[] capa; Capa tof; int[] lev, see, que; this(int n) { this.n = n; m = 0; g = new int[][n]; zu = []; capa = []; lev = new int[n]; see = new int[n]; que = new int[n]; } void addEdge(int u, int v, Capa w0, Capa w1 = 0) { g[u] ~= m; zu ~= v; capa ~= w0; ++m; g[v] ~= m; zu ~= u; capa ~= w1; ++m; } Capa augment(int src, int ink, Capa flo) { if (src == ink) return flo; foreach (i; g[src][see[src] .. $]) { if (capa[i] > wEPS && lev[src] < lev[zu[i]]) { Capa f = augment(zu[i], ink, min(flo, capa[i])); if (f > wEPS) { capa[i] -= f; capa[i ^ 1] += f; return f; } } ++see[src]; } return 0; } bool dinic(int src, int ink, Capa flo = wINF) { for (tof = 0; tof + wEPS < flo; ) { int qb, qe; lev[] = -1; dinicBFS: for (lev[src] = 0, que[qe++] = src; qb != qe; ) { const u = que[qb++]; foreach (i; g[u]) { const v = zu[i]; if (capa[i] > wEPS && lev[v] == -1) { lev[v] = lev[u] + 1; que[qe++] = v; if (v == ink) break dinicBFS; } } } if (lev[ink] == -1) return false; see[] = 0; for (; ; ) { Capa f = augment(src, ink, flo - tof); if (f <= wEPS) break; tof += f; } } return true; } } /* http://www.columbia.edu/~cs2035/courses/ieor6614.S16/mst-lp.pdf max_x { K min_y { \sum_i (c_i + x_i) y_i | MST-LP } - \sum_i d_i x_i | x_i >= 0 } https://www.jstage.jst.go.jp/article/kodaimath1978/11/1/11_1_5/_pdf min_y { max_x { \sum_i K (c_i + x_i) y_i - \sum_i d_i x_i | x_i >= 0 } | MST-LP } = min_y { max_x { \sum_i (K c_i y_i + (K y_i - d_i) x_i) | x_i >= 0 } | MST-LP } = min_y { \sum_i K c_i y_i + \sum_i INF [K y_i - d_i > 0] | MST-LP } = min_y { \sum_i K c_i y_i | MST-LP, K y_i <= d_i } MST-LP y_i >= 0 \sum_i y_i = N - 1 \sum_{i=uv, u,v\in S} y_i <= |S| - 1 ("cut >= 1" instead: not nec integer!) min_S { |S| - \sum_{i=uv, u,v\in S} y_i } >= 1 take i ==> take u and take v take i: cost -y_i take u: cost 1 need to take some u */ enum INF = 10L^^18; void main() { try { for (; ; ) { const N = readInt(); const M = readInt(); const K = readLong(); auto A = new int[M]; auto B = new int[M]; auto C = new long[M]; auto D = new long[M]; foreach (i; 0 .. M) { A[i] = readInt() - 1; B[i] = readInt() - 1; C[i] = readLong(); D[i] = readLong(); } alias Edge = Tuple!(long, "c", int, "i"); auto edges = new Edge[M]; foreach (i; 0 .. M) { edges[i] = Edge(C[i], i); } edges.sort; auto ys = new long[M]; // take i0 bool check(int i0) { auto mf = new MaxFlow!(long, 0, INF)(2 + M + N); long cost; foreach (i; 0 .. M) { cost -= ys[i]; mf.addEdge(0, 2 + i, ys[i]); mf.addEdge(2 + i, 2 + M + A[i], INF); mf.addEdge(2 + i, 2 + M + B[i], INF); } foreach (u; 0 .. N) { mf.addEdge(2 + M + u, 1, K); } mf.addEdge(0, 2 + i0, INF); mf.dinic(0, 1); if (cost + mf.tof < K) { return false; } return true; } foreach (ref edge; edges) { const i = edge.i; long lo = -1, hi = D[i] + 1; for (; lo + 1 < hi; ) { const mid = (lo + hi) / 2; ys[i] = mid; (check(i) ? lo : hi) = mid; } ys[i] = lo; } debug { writeln("ys = ", ys); } if (ys.sum < K * (N - 1)) { writeln(-1); } else { long ans; foreach (i; 0 .. M) { ans += C[i] * ys[i]; } writeln(ans); } } } catch (EOFException e) { } }