#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair LP; int dx[4]={1,-1,0,0}; int dy[4]={0,0,1,-1}; templatebool chmax(T &a, const T &b) {if(abool chmin(T &a, const T &b) {if(b struct MinCostFlow{ public: MinCostFlow() {} MinCostFlow(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) {//cost>=0!!! assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; using edge = MinCostFlow::edge;//cap,costの型を入れる int n; string S; ll V[2010]; vector cs[4]; void solve(){ cin >> n; cin >> S; rep(i,n) cin >> V[i]; rep(i,n){ if(S[i]=='y') cs[0].push_back(i); if(S[i]=='u') cs[1].push_back(i); if(S[i]=='k') cs[2].push_back(i); if(S[i]=='i') cs[3].push_back(i); } rep(i,4) if(cs[i].empty()){ cout << 0 << endl; return; } MinCostFlow mcf(n+2); int pos[4]={0,0,0,0}; mcf.add_edge(n,cs[0][0],n,0); rep(i,4){ rep(j,cs[i].size()-1){ mcf.add_edge(cs[i][j],cs[i][j+1],n,0); } } rep(i,n){ if(S[i]=='y'){ pos[0]+=1; if(pos[1]>=0 && cs[1].size()>pos[1]) { mcf.add_edge(i,cs[1][pos[1]],1,mod-V[i]); } } if(S[i]=='u'){ pos[1]+=1; if(pos[2]>=0 && cs[2].size()>pos[2]) mcf.add_edge(i,cs[2][pos[2]],1,mod-V[i]); } if(S[i]=='k'){ pos[2]+=1; if(pos[3]>=0 && cs[3].size()>pos[3]) mcf.add_edge(i,cs[3][pos[3]],1,mod-V[i]); } if(S[i]=='i'){ pos[3]+=1; mcf.add_edge(i,n+1,1,mod-V[i]); } } int ok; //cout << 1 << endl; auto ans=mcf.slope(n,n+1); //cout << ans.first << " " << ans.second << endl; ll A=0; for(auto pp:ans){ chmax(A,pp.first*4LL*mod-pp.second); } cout << A << endl; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }