#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 998244353; const ll INF = (ll)1000000007 * 1000000007; typedef pair P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair LP; int dx[4]={1,-1,0,0}; int dy[4]={0,0,1,-1}; templatebool chmax(T &a, const T &b) {if(abool chmin(T &a, const T &b) {if(b struct Compress{ vector V; Compress(){ V.clear(); } Compress(vector &V):V(V){} void add(T x){ V.push_back(x); } int build(){ sort(V.begin(),V.end()); V.erase(unique(V.begin(),V.end()),V.end()); return V.size(); } int get(T x){//get the index of the minimum element which is greater than x return lower_bound(V.begin(),V.end(),x)-V.begin(); } pair section(T l,T r){//get the range of indexes of [l,r) int l_=get(l),r_=get(r); return pair(l_,r_); } T &operator [] (int i) {return V[i];}; }; template struct ModInt { long long x; static constexpr int MOD = mod; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const {return x;} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator%(const ModInt &p) const { return ModInt(0); } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } ModInt power(const ModInt p) const{ return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using modint = ModInt; int n,k,x,y,m=1024; Compress A; vector Z[1024]; vector Y; void calc(int siz,int sum,int pre){ if(siz==n/2){ Y[sum]+=1; Z[pre][sum]+=1; return; } rep(i,k){ if(A[i]==pre) continue; calc(siz+1,sum^A[i],A[i]); } } void fwt(vector& f) { int n = f.size(); for (int d = 1 ; d < n ; d <<= 1){ for (int m = d << 1 ,i = 0;i < n ; i+=m){ for (int j = 0 ; j < d ; j++){ modint x = f[i+j],y = f[i+j+d]; //xor; f[i+j]=x+y,f[i+j+d]=x-y; //and //a[i+j]=x+y; //or //a[i+j+d]=x+y; } } } } void ifwt(vector& f) { int n = f.size(); modint inv2=((modint)2).inverse(); for (int d = 1 ; d < n ; d<<=1){ for (int m = d <<1, i = 0; i < n; i+=m){ for (int j = 0 ; j < d ; j++){ modint x = f[i+j],y = f[i+j+d]; //xor f[i+j] = (x+y)*inv2,f[i+j+d]=(x-y)*inv2; //and //a[i+j] = x-y; //or //a[i+j+d] = y-x; } } } } void convolution(vector &A,vector &B,vector &C){ fwt(A); rep(i,m){ C[i]=A[i]*B[i]; } ifwt(C); } void solve(){ cin >> n >> k >> x >> y; rep(i,k){ int a;cin >> a; A.add(a); } int k=A.build(); Y.resize(m,0); rep(i,m) Z[i].resize(m,0); calc(0,0,-1); vector S(m); vector> T(m,vector(m,0)); //rep(i,20) cout << i << " " << Y[i] << endl; convolution(Y,Y,S); //rep(i,20) cout << i << " " << S[i] << endl; rep(i,m) convolution(Z[i],Z[i],T[i]); chmin(x,m);chmin(y,m-1); modint ans=0; Rep(i,x,y+1){ ans+=S[i]; rep(j,m){ ans-=T[j][i]; } } cout << ans << endl; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }