# f(n) : 2n^2の約数のうち,n以下のものの個数 # F(n) : sum_(n=1..n)f(n) # f(15) = 8 # F(15) = 63 # F(1000) = 15066 # F(10^12)を求めよ from collections import defaultdict def guchok_f(n): m = 2*n**2 i = 2 count = 1 while i<=n: if m%i==0: count += 1 i += 1 return count def guchok_F(n): count = 0 for i in range(1, n+1): count += guchok_f(i) return count print(guchok_f(15)) print(guchok_F(15)) print(guchok_F(1000)) # 以上の計算量はf(n)でO(n)だから合計でO(n^2) # print(guchok_F(10**5)) # 上が大体52秒くらいかかる # k が2n^2の約数となるk<=n<=Nの個数g(k)を考える # sum(k=1..N)g(k) = F(N)となる # k を素因数分解してa1^b1*a2^b2...ai^biとなるとする。 # k' = a1^(-(-b1//2)-1)a2^(-(-b2//2))...として、N以下k以上のk'の倍数の個数を数えればいい。 # a1=2, a2=3...となってるとしている。a1だけ先に-1して、a1..iを全て2で割って繰り上げ import itertools import collections from math import gcd def prime_factor_table(n): table = [0] * (n + 1) for i in range(2, n + 1): if table[i] == 0: for j in range(i + i, n + 1, i): table[j] = i return table def prime_factor(n, prime_factor_table): prime_count = dict() while prime_factor_table[n] != 0: if prime_factor_table[n] not in prime_count: prime_count[prime_factor_table[n]] = 0 prime_count[prime_factor_table[n]] += 1 n //= prime_factor_table[n] if n not in prime_count: prime_count[n] = 0 prime_count[n] += 1 return prime_count def yakusu_base_F(n): pp = prime_factor_table(n) R = 0 R2 = 0 for i in range(1, n+1): tt = prime_factor(i, pp) x = 1 for key in tt: v = tt[key] if key == 2: v-=1 x *= key**-((-v)//2) diff = (n-i)//x + 1 diff2 = n//x - i//x+1 R += diff R2 += diff2 # if diff>-1: # print(n, i,x, diff) # print(n, i,x, diff2) # print(tt) return R, R2 # 以上の計算だと以下が0.49sかかる。O(NlogN) # print(yakusu_base_F(10**6)) # k'ごとにカウントすればさらに高速化できる。 # k'=p1^q1 * p2^q2...pt^qt # になるようなk'が奇数ならkは2^(t+1)個、偶数なら2^(t)個ある print(yakusu_base_F(10**8)) def yakusu_base_F_test(n): pp = prime_factor_table(n) R = 0 d = defaultdict(set) count = 0 for i in range(1, n+1): tt = prime_factor(i, pp) x = 1 for key in tt: v = tt[key] if key == 2: v-=1 x *= key**-((-v)//2) diff = (n-i)//x+1 d[x].add((i, diff)) if diff <= 1000: # print(i, x, diff) count += 1 # if diff>30: # print(i, diff) R += diff print(len(d)) # keys = sorted(list(d.keys())) # for key in keys: # print(key, d[key]) # print(count) return R #print(yakusu_base_F_test(10**3))