mod = 10 ** 9 + 7 class combinatorics: def __init__(self, n): self.n = n self.fa = [1] * (self.n * 2 + 1) self.fi = [1] * (self.n * 2 + 1) for i in range(1, self.n * 2 + 1): self.fa[i] = self.fa[i - 1] * i % mod self.fi[-1] = pow(self.fa[-1], mod - 2, mod) for i in range(self.n * 2, 0, -1): self.fi[i - 1] = self.fi[i] * i % mod def comb(self, n, r): if n < r:return 0 if n < 0 or r < 0:return 0 return self.fa[n] * self.fi[r] % mod * self.fi[n - r] % mod def perm(self, n, r): if n < r:return 0 if n < 0 or r < 0:return 0 return self.fa[n] * self.fi[n - r] % mod def combr(self, n, r): if n == r == 0:return 1 return self.comb(n + r - 1, r) #拡張Euclidの互除法 def extgcd(a, b, d = 0): g = a if b == 0: x, y = 1, 0 else: x, y, g = extgcd(b, a % b) x, y = y, x - a // b * y return x, y, g #mod p における逆元 def invmod(a, p): x, y, g = extgcd(a, p) x %= p return x n, m = map(int, input().split()) if n == 1:exit(print(1)) ans = 0 C = combinatorics(m) for i in range(m // n + 1): ans += C.comb(m - i * (n - 1), i) ans %= mod print(ans)