#include using namespace std; using int128 = __int128_t; using int64 = long long; using int32 = int; using uint128 = __uint128_t; using uint64 = unsigned long long; using uint32 = unsigned int; #define ALL(obj) (obj).begin(),(obj).end() template using priority_queue_reverse = priority_queue,greater>; constexpr int64 MOD = 1'000'000'000LL + 7; //' constexpr int64 MOD2 = 998244353; constexpr int64 HIGHINF = 1'000'000'000'000'000'000LL; constexpr int64 LOWINF = 1'000'000'000'000'000LL; //' constexpr long double PI = 3.1415926535897932384626433L; template vector multivector(size_t N,T init){return vector(N,init);} template auto multivector(size_t N,T... t){return vector(N,multivector(t...));} template void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template ostream &operator<<(ostream &o, const map&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template ostream &operator<<(ostream &o, const set&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template ostream &operator<<(ostream &o, const multiset&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template ostream &operator<<(ostream &o, const vector&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template ostream &operator<<(ostream &o, const deque&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template ostream &operator<<(ostream &o, const pair&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} void print(void) {cout << endl;} template void print(Head&& head) {cout << head;print();} template void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward(tail)...);} template void chmax(T& a, const T b){a=max(a,b);} template void chmin(T& a, const T b){a=min(a,b);} vector split(const string &str, const char delemiter) {vector res;stringstream ss(str);string buffer; while( getline(ss, buffer, delemiter) ) res.push_back(buffer); return res;} inline constexpr int msb(int x) {return x?31-__builtin_clz(x):-1;} inline constexpr int64 ceil_div(const int64 a,const int64 b) {return (a+(b-1))/b;}// return ceil(a/b) void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title Gcd - 高速GCD * @docs md/math/Gcd.md */ class Gcd{ public: inline static long long impl(long long n, long long m) { static constexpr long long K = 5; long long t,s; for(int i = 0; t = n - m, s = n - m * K, i < 80; ++i) { if(t= m * K) n = s; } } return impl(m, n % m); } inline static long long pre(long long n, long long m) { long long t; for(int i = 0; t = n - m, i < 4; ++i) { (t < m ? n=m,m=t : n=t); if(!m) return n; } return impl(n, m); } inline static long long gcd(long long n, long long m) { return (n>m ? pre(n,m) : pre(m,n)); } inline static constexpr long long pureGcd(long long a, long long b) { return (b ? pureGcd(b, a % b):a); } inline static constexpr long long lcm(long long a, long long b) { return (a*b ? (a / gcd(a, b)*b): 0); } inline static constexpr long long extGcd(long long a, long long b, long long &x, long long &y) { if (b == 0) return x = 1, y = 0, a; long long d = extGcd(b, a%b, y, x); return y -= a / b * x, d; } }; /* * @title Prime - 高速素因数分解・ミラーラビン素数判定 * @docs md/math/Prime.md */ class Prime{ using int128 = __int128_t; using int64 = long long; long long pow(long long x, long long n, long long mod) { long long res = 1; for (x %= mod; n > 0; n >>= 1, x=(int128(x)*x)%mod) if (n & 1) res = (int128(res)*x)%mod; return res; } int64 rho(int64 n){ if(miller_rabin(n)) return n; if(n%2 == 0) return 2; for(int64 c=1,x=2,y=2,d;;c++){ do{ x=(int128(x)*x+c)%n; y=(int128(y)*y+c)%n; y=(int128(y)*y+c)%n; d=Gcd::gcd(x-y+n,n); }while(d==1); if(d factor(int64 n) { if(n <= 1) return {}; int64 p = rho(n); if(p == n) return {p}; auto l = factor(p); auto r = factor(n / p); copy(r.begin(), r.end(), back_inserter(l)); return l; } public: int miller_rabin(const int64 n) { if(n == 2) return 1; if(n < 2 || n%2 == 0) return 0; int64 m = n - 1; for (;!(m&1);m>>=1); for (int64 a: {2,325,9375,28178,450775,9780504,1795265022}) { if(a>=n) break; int64 x=m,r=pow(a,x,n); for(;x != n-1 && r != 1 && r != n-1;x <<= 1) r = (int128(r)*r)%n; if(r!=n-1 && x%2==0) return 0; } return 1; } vector> factorization(int64 n) { auto v = factor(n); vector> vp; sort(v.begin(),v.end()); int64 prev = 0; for(int64 p:v) { if(p == prev) vp.back().second++; else vp.emplace_back(p,1); prev=p; } return vp; } }; /** * @url * @est */ int main() { cin.tie(0);ios::sync_with_stdio(false); int N; int64 M,P; cin >> N >> M >> P; vector> A,B; Prime pr; for(int i=0;i> a; auto vp = pr.factorization(a); int64 cost = 1; for(auto& p:vp) if(p.first == P) cost += p.second; if(cost > 1) A.emplace_back(a,1); while(a%P==0) a /= P; if(a>1) B.emplace_back(a,cost); } int L = 1000; vector dp(L,0); dp[0]=1; // for(int i=0;iM) chmin(ans,i); if(ans == L) ans = -1; cout << ans << endl; return 0; }