// The main code is at the very bottom. #[allow(unused_imports)] use { lib::byte::ByteChar, std::cell::{Cell, RefCell}, std::cmp::{ self, Ordering::{self, *}, Reverse, }, std::collections::*, std::convert::identity, std::fmt::{self, Debug, Display, Formatter}, std::io::prelude::*, std::iter::{self, FromIterator}, std::marker::PhantomData, std::mem, std::num::Wrapping, std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive}, std::process, std::rc::Rc, std::thread, std::time::{Duration, Instant}, std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize}, }; #[allow(unused_imports)] #[macro_use] pub mod lib { pub mod byte { pub use self::byte_char::*; mod byte_char { use std::error::Error; use std::fmt::{self, Debug, Display, Formatter}; use std::str::FromStr; #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] #[repr(transparent)] pub struct ByteChar(pub u8); impl Debug for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "b'{}'", self.0 as char) } } impl Display for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{}", self.0 as char) } } impl FromStr for ByteChar { type Err = ParseByteCharError; fn from_str(s: &str) -> Result { match s.as_bytes().len() { 1 => Ok(ByteChar(s.as_bytes()[0])), 0 => Err(ParseByteCharErrorKind::EmptyStr.into()), _ => Err(ParseByteCharErrorKind::TooManyBytes.into()), } } } #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub struct ParseByteCharError { kind: ParseByteCharErrorKind, } impl Display for ParseByteCharError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.write_str(match self.kind { ParseByteCharErrorKind::EmptyStr => "empty string", ParseByteCharErrorKind::TooManyBytes => "too many bytes", }) } } impl Error for ParseByteCharError {} #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] enum ParseByteCharErrorKind { EmptyStr, TooManyBytes, } impl From for ParseByteCharError { fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError { ParseByteCharError { kind } } } } } pub mod io { pub use self::scanner::*; mod scanner { use std::io::{self, BufRead}; use std::iter; use std::str::FromStr; #[derive(Debug)] pub struct Scanner { reader: R, buf: String, pos: usize, } impl Scanner { pub fn new(reader: R) -> Self { Scanner { reader, buf: String::new(), pos: 0, } } pub fn next(&mut self) -> io::Result<&str> { let start = loop { match self.rest().find(|c| c != ' ') { Some(i) => break i, None => self.fill_buf()?, } }; self.pos += start; let len = self.rest().find(' ').unwrap_or(self.rest().len()); let s = &self.buf[self.pos..][..len]; // self.rest()[..len] self.pos += len; Ok(s) } pub fn parse_next(&mut self) -> io::Result> where T: FromStr, { Ok(self.next()?.parse()) } pub fn parse_next_n(&mut self, n: usize) -> io::Result, T::Err>> where T: FromStr, { iter::repeat_with(|| self.parse_next()).take(n).collect() } pub fn map_next_bytes(&mut self, mut f: F) -> io::Result> where F: FnMut(u8) -> T, { Ok(self.next()?.bytes().map(&mut f).collect()) } pub fn map_next_bytes_n(&mut self, n: usize, mut f: F) -> io::Result>> where F: FnMut(u8) -> T, { iter::repeat_with(|| self.map_next_bytes(&mut f)) .take(n) .collect() } fn rest(&self) -> &str { &self.buf[self.pos..] } fn fill_buf(&mut self) -> io::Result<()> { self.buf.clear(); self.pos = 0; let read = self.reader.read_line(&mut self.buf)?; if read == 0 { return Err(io::ErrorKind::UnexpectedEof.into()); } if *self.buf.as_bytes().last().unwrap() == b'\n' { self.buf.pop(); } Ok(()) } } } } } #[allow(dead_code)] mod n91lib_rs { pub mod data_structure { pub mod bit_vector { use crate::n91lib_rs::other::bit::access; use crate::n91lib_rs::other::bit::rank; use crate::n91lib_rs::other::bit::select; use crate::n91lib_rs::other::bit::WORD; use std::iter::FromIterator; use std::iter::IntoIterator; use std::iter::Iterator; pub struct BitVector { data: Box<[Node]>, } struct Node { bit: usize, sum: usize, } impl BitVector { pub fn access(&self, index: usize) -> bool { access(self.data[index / WORD].bit, index % WORD) } pub fn rank0(&self, end: usize) -> usize { end - self.rank1(end) } pub fn rank1(&self, end: usize) -> usize { let t = &self.data[end / WORD]; t.sum + rank(t.bit, end % WORD) } pub fn select0(&self, k: usize) -> usize { let (mut st, mut en) = (0, self.data.len()); while en - st != 1 { let mid = (st + en) / 2; if mid * WORD - self.data[mid].sum <= k { st = mid; } else { en = mid; } } let rem = k - (st * WORD - self.data[st].sum); st * WORD + select(!self.data[st].bit, rem) } pub fn select1(&self, k: usize) -> usize { let (mut st, mut en) = (0, self.data.len()); while en - st != 1 { let mid = (st + en) / 2; if self.data[mid].sum <= k { st = mid; } else { en = mid; } } let rem = k - self.data[st].sum; st * WORD + select(self.data[st].bit, rem) } } impl FromIterator for BitVector { fn from_iter>(iter: T) -> Self { let mut iter = iter.into_iter(); let mut v = Vec::new(); let mut sum = 0; 'base: loop { let mut bit = 0; for i in 0..WORD { match iter.next() { Some(v) => { if v { bit |= 1 << i; } } None => { v.push(Node { bit: bit, sum: sum }); break 'base; } } } v.push(Node { bit: bit, sum: sum }); sum += bit.count_ones() as usize; } Self { data: v.into_boxed_slice(), } } } } pub mod wavelet_matrix { use crate::n91lib_rs::data_structure::BitVector; use crate::n91lib_rs::other::bit::access; use std::ops::Range; pub struct WaveletMatrix { data: Box<[(usize, BitVector)]>, } impl WaveletMatrix { pub fn new(bitlen: usize, mut seq: Vec) -> Self { let len = seq.len(); let mut data = Vec::new(); for l in (0..bitlen).rev() { let v = seq.iter().map(|&x| access(x, l)).collect::(); data.push((v.rank0(len), v)); let zeros = seq.iter().filter(|&&x| !access(x, l)).cloned(); let ones = seq.iter().filter(|&&x| access(x, l)).cloned(); seq = zeros.chain(ones).collect(); } Self { data: data .into_iter() .rev() .collect::>() .into_boxed_slice(), } } pub fn access(&self, mut index: usize) -> usize { let mut ret = 0; for (l, &(z, ref v)) in self.base_iter().rev() { if !v.access(index) { index = v.rank0(index); } else { ret |= 1 << l; index = z + v.rank1(index); } } ret } pub fn rank(&self, value: usize, mut range: Range) -> usize { for (l, &(z, ref v)) in self.base_iter().rev() { if !access(value, l) { range.start = v.rank0(range.start); range.end = v.rank0(range.end); } else { range.start = z + v.rank1(range.start); range.end = z + v.rank1(range.end); } } range.end - range.start } pub fn select(&self, value: usize, k: usize) -> usize { let mut index = 0; for (l, &(z, ref v)) in self.base_iter().rev() { if !access(value, l) { index = v.rank0(index); } else { index = z + v.rank1(index); } } index += k; for (_, &(z, ref v)) in self.base_iter() { if index < z { index = v.select0(index); } else { index = v.select1(index - z); } } index } pub fn count(&self, idxrng: Range, valrng: Range) -> usize { self.count_to(idxrng.clone(), valrng.end) - self.count_to(idxrng, valrng.start) } pub fn quantile(&self, mut range: Range, mut k: usize) -> usize { let mut ret = 0; for (l, &(z, ref v)) in self.base_iter().rev() { let zeros = v.rank0(range.end) - v.rank0(range.start); if zeros > k { range.start = v.rank0(range.start); range.end = v.rank0(range.end); } else { k -= zeros; ret |= 1 << l; range.start = z + v.rank1(range.start); range.end = z + v.rank1(range.end); } } ret } fn count_to(&self, mut range: Range, val: usize) -> usize { let mut ret = 0; for (l, &(z, ref v)) in self.base_iter().rev() { if !access(val, l) { range.start = v.rank0(range.start); range.end = v.rank0(range.end); } else { ret += v.rank0(range.end) - v.rank0(range.start); range.start = z + v.rank1(range.start); range.end = z + v.rank1(range.end); } } ret } fn base_iter(&self) -> impl DoubleEndedIterator { self.data.iter().enumerate() } } } pub use bit_vector::BitVector; } pub mod other { pub mod bit { pub const WORD: usize = (0 as usize).count_zeros() as usize; pub fn access(bit: usize, index: usize) -> bool { bit & 1 << index != 0 } pub fn rank(bit: usize, end: usize) -> usize { (bit & !(!0 << end)).count_ones() as usize } #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] pub fn select(bit: usize, k: usize) -> usize { macro_rules! select_impl { ($k: expr, $({$b: expr, $m: expr, $s: expr}),*) => { let mut k = $k; let mut r = 0; $( let b = ($b >> r & $m) as usize; if k >= b { k -= b; r += $s; } )* r } } #[cfg(target_arch = "x86")] { if is_x86_feature_detected!("bmi2") { use std::arch::x86::_pdep_u32; unsafe { _pdep_u32(1 << k, bit as u32).trailing_zeros() as usize } } else { let b0 = bit as u32; let b1 = (b0 & 0x55555555) + (b0 >> 1 & 0x55555555); let b2 = (b1 & 0x33333333) + (b1 >> 2 & 0x33333333); let b3 = b2 + (b2 >> 4) & 0x0F0F0F0F; let b4 = b3 + (b3 >> 8) & 0x00FF00FF; let b5 = b4 + (b4 >> 16) & 0x0000FFFF; if k >= b5 as usize { return 32; } #[allow(unused_assignments)] { select_impl! { k, {b4, 0xFFFF, 16}, {b3, 0xFF, 8}, {b2, 0xF, 4}, {b1, 0x3, 2}, {b0, 0x1, 1} } } } } #[cfg(target_arch = "x86_64")] { if is_x86_feature_detected!("bmi2") { use std::arch::x86_64::_pdep_u64; unsafe { _pdep_u64(1 << k, bit as u64).trailing_zeros() as usize } } else { let b0 = bit as u64; let b1 = (b0 & 0x5555555555555555) + (b0 >> 1 & 0x5555555555555555); let b2 = (b1 & 0x3333333333333333) + (b1 >> 2 & 0x3333333333333333); let b3 = b2 + (b2 >> 4) & 0x0F0F0F0F0F0F0F0F; let b4 = b3 + (b3 >> 8) & 0x00FF00FF00FF00FF; let b5 = b4 + (b4 >> 16) & 0x0000FFFF0000FFFF; let b6 = b5 + (b5 >> 32) & 0x00000000FFFFFFFF; if k >= b6 as usize { return 64; } #[allow(unused_assignments)] { select_impl! { k, {b5, 0xFFFFFFFF, 32}, {b4, 0xFFFF, 16}, {b3, 0xFF, 8}, {b2, 0xF, 4}, {b1, 0x3, 2}, {b0, 0x1, 1} } } } } } pub fn bsf(bit: usize) -> usize { assert_ne!(bit, 0); bit.trailing_zeros() as usize } pub fn bsr(bit: usize) -> usize { assert_ne!(bit, 0); WORD - 1 - bit.leading_zeros() as usize } pub fn ceil_log2(n: usize) -> usize { assert_ne!(n, 0); WORD - 1 - (2 * n - 1).leading_zeros() as usize } } } } #[allow(unused_macros)] macro_rules! eprint { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprint!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! eprintln { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprintln!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! dbg { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::dbg!($($arg)*) } else { ($($arg)*) } }; } const CUSTOM_STACK_SIZE_MIB: Option = Some(1024); const INTERACTIVE: bool = false; fn main() -> std::io::Result<()> { match CUSTOM_STACK_SIZE_MIB { Some(stack_size_mib) => std::thread::Builder::new() .name("run_solver".to_owned()) .stack_size(stack_size_mib * 1024 * 1024) .spawn(run_solver)? .join() .unwrap(), None => run_solver(), } } fn run_solver() -> std::io::Result<()> { let stdin = std::io::stdin(); let reader = stdin.lock(); let stdout = std::io::stdout(); let writer = stdout.lock(); macro_rules! with_wrapper { ($($wrapper:expr)?) => {{ let mut writer = $($wrapper)?(writer); solve(reader, &mut writer)?; writer.flush() }}; } if cfg!(debug_assertions) || INTERACTIVE { with_wrapper!() } else { with_wrapper!(std::io::BufWriter::new) } } fn solve(reader: R, mut writer: W) -> std::io::Result<()> where R: BufRead, W: Write, { let mut _scanner = lib::io::Scanner::new(reader); #[allow(unused_macros)] macro_rules! scan { ($T:ty) => { _scanner.parse_next::<$T>()?.unwrap() }; ($($T:ty),+) => { ($(scan!($T)),+) }; ($T:ty; $n:expr) => { _scanner.parse_next_n::<$T>($n)?.unwrap() }; ($($T:ty),+; $n:expr) => { iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) }) .take($n) .collect::>>()? }; } #[allow(unused_macros)] macro_rules! scan_bytes_map { ($f:expr) => { _scanner.map_next_bytes($f)? }; ($f:expr; $n:expr) => { _scanner.map_next_bytes_n($n, $f)? }; } #[allow(unused_macros)] macro_rules! print { ($($arg:tt)*) => { write!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! println { ($($arg:tt)*) => { writeln!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! answer { ($($arg:tt)*) => {{ println!($($arg)*); return Ok(()); }}; } { use n91lib_rs::data_structure::wavelet_matrix::WaveletMatrix; fn dist(x: usize, y: usize) -> usize { if x > y { x - y } else { y - x } } let n = scan!(usize); let x = scan!(usize; n); let wm = WaveletMatrix::new(30, x); let q = scan!(usize); for _ in 0..q { let (l, r, x) = scan!(usize, usize, usize); let (l, r) = (l - 1, r - 1); let nth = |i| wm.quantile(l..r + 1, i); let mut ok = 0; let mut ng = n; while ng - ok > 1 { let mid = (ok + ng) / 2; if nth(mid) <= x { ok = mid; } else { ng = mid; } } let mut ans = dist(x, nth(ok)); if ok + 1 < r - l + 1 { ans = ans.min(dist(x, nth(ok + 1))); } println!("{}", ans); } } #[allow(unreachable_code)] Ok(()) }