///////////////////////////////////////////////// ///// Give me AC!!!! ///// ///////////////////////////////////////////////// //↑これじゃ気合いが足りない! ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///// お願いしますACをくださいそうじゃないと僕泣きますお願いしますACをくださいJudge様.... ///// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include using namespace std; using ll = long long; using ld = long double; #define rep(i,N) for(int i = 0; i < (N); i++) #define erep(i,N) for(int i = N - 1; i >= 0; i--) const ll MOD = 1e9+7; const ll INF = numeric_limits::max(); const int MAX = 500000; const ld PI = (acos(-1)); template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true;} return false;} template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true;} return false;} ld rad(ld a) {return a * 180 / PI;} const int dx[8] = {1, 0, -1, 0, -1, 1, -1, 1};//2次元グリッド上のx軸方向 const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};//2次元グリッド上のy軸方向 template void rm(vector &vec) { sort(vec.begin(),vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end()); } //using P = pair; struct UnionFind { vector par; UnionFind(int n) : par(n, -1) { } int root(int x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } bool same(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (par[x] > par[y]) swap(x, y); // merge technique par[x] += par[y]; par[y] = x; return true; } int size(int x) { return -par[root(x)]; } }; template struct BIT { private: vector array; const int n; public: BIT(int _n) : array(_n + 1, 0), n(_n) {} T sum(int i) { T s = 0; while (i > 0) { s += array[i]; i -= i & -i; } return s; } T sum(int i,int j) { T ret_i = sum(i - 1); T ret_j = sum(j); return ret_j - ret_i; } void add(int i,T x) { while (i <= n) { array[i] += x; i += i & -i; } } }; map factorize_list; void factorize(ll k) { while(1){ bool p = true; for (ll i = 2; i * i <= k; i++){ if (k % i == 0){ factorize_list[i]++; k /= i; p = false; break; } } if(p) { factorize_list[k]++; break; } } return ; } ll mod(ll val) { ll res = val % MOD; if (res < 0) res += MOD; return res; } char upper(char c){ if('a' <= c && c <= 'z'){ c = c - ('a' - 'A'); } return c; } char lower(char c){ if('A' <= c && c <= 'Z'){ c = c + ('a' - 'A'); } return c; } ll fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 ll COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll Expo(ll N,ll K) { N %= MOD; if (K == 0) { return 1; } ll Kc = K,rui = N,ans = 1; while(Kc) { if (Kc % 2) { ans *= rui; ans %= MOD; } rui *= rui; rui %= MOD; Kc /= 2; } return ans; } int dp[100050]; ll extGCD(ll a, ll b, ll &x, ll &y) { if (b == 0) { x = 1; y = 0; return a; } ll d = extGCD(b, a%b, y, x); // 再帰的に解く y -= a / b * x; return d; } // 負の数にも対応した mod (a = -11 とかでも OK) inline ll mod(ll a, ll m) { return (a % m + m) % m; } // 逆元計算 (ここでは a と m が互いに素であることが必要) ll modinv(ll a, ll m) { ll x, y; extGCD(a, m, x, y); return mod(x, m); // 気持ち的には x % m だが、x が負かもしれないので } int op(int a,int b) { return a ^ b; } int e() { return (int)0; } template struct segtree { public: int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } segtree() : segtree(0) {} segtree(int n) : segtree(vector(n, e())) {} segtree(const vector& v) : _n(int(v.size())) { log = ceil_pow2(_n); size = 1 << log; d = vector(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } template int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template int max_right(int l, F f) { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template int min_left(int r, F f) { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; vector d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; struct edge { int to; ll cost; }; template T sqroot(T Ex) { T l = 0,r = min(Ex,(T)(1e9)),unit = 1e-10;//unit:long longのとき1,long doubleのとき精度 if (0.1 != (T)(0.1)) unit = 1; while (r - l > unit) { T val = (l + r) / 2; if (val * val > Ex) r = val; else l = val; } return l;//Ex以下のT型の平方根 } template using Graph = vector>; #define Sugsugar cin.tie(0);ios::sync_with_stdio(false) template void sitpress(vector &vec) { vector array = vec; rm(array); for (int i = 0; i < vec.size(); i++) { int l = -1,r = array.size(); while (r - l > 1) { int mid = (l + r) / 2; if (array.at(mid) >= vec.at(i)) r = mid; else l = mid; } vec.at(i) = r; } } int solve(int v) { int cnt = 0,a = 1; while (v) { cnt += (v % 10) * a; a++; v /= 10; } return cnt; } signed main() { Sugsugar; int N,K; cin >> N >> K; vector A(N); ll cnt = 0; for (int i = 0; i < N; i++) { cin >> A.at(i); cnt += A.at(i); } int ex = 1; ll ans = 0; for (int i = N - 1; i >= 0; i--) { ans += ex * A.at(i); ans %= cnt; ex *= K; ex %= cnt; } cout << ans << endl; return 0; }