import sys input = sys.stdin.readline def euler_phi(n): res = n for x in range(2, int(n**.5)+1): if n % x == 0: res = res // x * (x-1) while n % x == 0: n //= x if n!=1: res = (res//n) * (n-1) return res def ind(b,n): res=0 while n%b==0: res+=1 n//=b return res def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(n): prime = primeFactor(n) res = [1] for p in prime: new = [] for a in res: for j in range(prime[p]+1): new.append(a*p**j) res = new return res ans = [] for _ in range(int(input())): N = int(input()) while N%2==0: N //= 2 while N%5==0: N //= 5 primef = primeFactor(N) phi = N for p in primef: phi *= (p-1) phi //= p divi = divisors(phi) #print(divi) for d in divi: if pow(10,d,N)==1: ans.append(d) break if N==1: ans.append(1) print(*ans,sep="\n")