#include using namespace std; using int64 = long long; const int mod = 1e9 + 7; //const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } template< typename CapType, typename CostType > class MinCostFlowDAG { public: using Cat = CapType; using Cot = CostType; using pti = pair< Cot, int >; struct edge { int to, rev; Cat cap; Cot cost; }; const int V; const Cot inf; vector< vector< edge > > G; vector< Cot > h, dist; vector< int > deg, ord, prevv, preve; MinCostFlowDAG(const int node_size) : V(node_size), inf(numeric_limits< Cot >::max()), G(V), h(V, inf), dist(V), deg(V, 0), prevv(V), preve(V) {} void add_edge(const int from, const int to, const Cat cap, const Cot cost) { if(cap == 0) return; G[from].push_back((edge) {to, (int) G[to].size(), cap, cost}); G[to].push_back((edge) {from, (int) G[from].size() - 1, 0, -cost}); ++deg[to]; } bool tsort() { queue< int > que; for(int i = 0; i < V; ++i) { if(deg[i] == 0) que.push(i); } while(!que.empty()) { const int p = que.front(); que.pop(); ord.push_back(p); for(auto &e : G[p]) { if(e.cap > 0 && --deg[e.to] == 0) que.push(e.to); } } return (*max_element(deg.begin(), deg.end()) == 0); } void calc_potential(const int s) { h[s] = 0; for(const int v : ord) { if(h[v] == inf) continue; for(const edge &e : G[v]) { if(e.cap > 0) h[e.to] = min(h[e.to], h[v] + e.cost); } } } void Dijkstra(const int s) { priority_queue< pti, vector< pti >, greater< pti > > que; fill(dist.begin(), dist.end(), inf); dist[s] = 0; que.push(pti(0, s)); while(!que.empty()) { pti p = que.top(); que.pop(); const int v = p.second; if(dist[v] < p.first) continue; for(int i = 0; i < (int) G[v].size(); ++i) { edge &e = G[v][i]; if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v, preve[e.to] = i; que.push(pti(dist[e.to], e.to)); } } } } void update(const int s, const int t, Cat &f, Cot &res) { for(int i = 0; i < V; i++) { if(dist[i] != inf) h[i] += dist[i]; } Cat d = f; for(int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += h[t] * d; for(int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } Cot solve(const int s, const int t, Cat f) { if(!tsort()) assert(false); // not DAG calc_potential(s); Cot res = 0; while(f > 0) { Dijkstra(s); if(dist[t] == inf) return -1; update(s, t, f, res); } return res; } }; int main() { int N; int64 M; cin >> N >> M; vector< int > X(N), Y(N), Z(N); for(int i = 0; i < N; i++) { int A, B, C; cin >> A >> B >> C; if(A > C) swap(A, C); X[i] = A; Y[i] = B; Z[i] = C; } sort(begin(Y), end(Y)); MinCostFlowDAG< int64, int64 > flow(N + N + N + N + 2); int S = N + N + N + N; int T = S + 1; // <----- for(int i = N - 2; i >= 0; i--) { flow.add_edge(i + N + 1, i + N, N, 0); } // ----> for(int i = 1; i < N; i++) { flow.add_edge(i + N + N - 1, i + N + N, N, 0); } for(int i = 0; i < N; i++) { flow.add_edge(i + N, i + N + N + N, 1, 0); flow.add_edge(i + N + N, i + N + N + N, 1, inf - Y[i]); flow.add_edge(i + N + N + N, T, 1, 0); } for(int i = 0; i < N; i++) { vector< int > ok(N); for(int j = 0; j < N; j++) { if(Y[j] < X[i]) ok[j] = 1; else if(Z[i] < Y[j]) ok[j] = 2; } flow.add_edge(S, i, 1, 0); for(int j = 0; j < N; j++) { if(ok[j] == 2) { flow.add_edge(i, j + N + N, 1, 0); break; } } for(int j = N - 1; j >= 0; j--) { if(ok[j] == 1) { flow.add_edge(i, j + N, 1, inf - Z[i]); break; } } } auto ret = flow.solve(S, T, N); if(ret == -1) { cout << "NO\n"; } else { cout << "YES\n"; ret -= 1LL * inf * N; ret *= -1; if(ret >= M) cout << "KADOMATSU!\n"; else cout << "NO\n"; } }