#include using namespace std; template< typename flow_t, typename cost_t > struct PrimalDual { const cost_t INF; struct edge { int to; flow_t cap; cost_t cost; int rev; bool isrev; }; vector< vector< edge > > graph; vector< cost_t > potential, min_cost; vector< int > prevv, preve; PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {} void add_edge(int from, int to, flow_t cap, cost_t cost) { graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false}); graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true}); } cost_t min_cost_flow(int s, int t, flow_t f) { int V = (int) graph.size(); cost_t ret = 0; using Pi = pair< cost_t, int >; priority_queue< Pi, vector< Pi >, greater< Pi > > que; potential.assign(V, 0); preve.assign(V, -1); prevv.assign(V, -1); while(f > 0) { min_cost.assign(V, INF); que.emplace(0, s); min_cost[s] = 0; while(!que.empty()) { Pi p = que.top(); que.pop(); if(min_cost[p.second] < p.first) continue; for(int i = 0; i < graph[p.second].size(); i++) { edge &e = graph[p.second][i]; cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to]; if(e.cap > 0 && min_cost[e.to] > nextCost) { min_cost[e.to] = nextCost; prevv[e.to] = p.second, preve[e.to] = i; que.emplace(min_cost[e.to], e.to); } } } if(min_cost[t] == INF) return -1; for(int v = 0; v < V; v++) potential[v] += min_cost[v]; flow_t addflow = f; for(int v = t; v != s; v = prevv[v]) { addflow = min(addflow, graph[prevv[v]][preve[v]].cap); } f -= addflow; ret += addflow * potential[t]; for(int v = t; v != s; v = prevv[v]) { edge &e = graph[prevv[v]][preve[v]]; e.cap -= addflow; graph[v][e.rev].cap += addflow; } } return ret; } void output() { for(int i = 0; i < graph.size(); i++) { for(auto &e : graph[i]) { if(e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl; } } } }; using ll = int64_t; int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); ll N, M; cin >> N >> M; vector A(N), B(N), C(N); for(ll i = 0; i < N; i++){ cin >> A[i] >> B[i] >> C[i]; if(A[i] > C[i]) swap(A[i], C[i]); } PrimalDual g(N * 4 + 2); const ll S = N * 4, T = S + 1; for(ll i = 0; i < N; i++) g.add_edge(S, i, 1, 0); vector index(N); iota(index.begin(), index.end(), 0); sort(index.begin(), index.end(), [&](ll x, ll y){ return A[x] < A[y]; }); for(ll i = 0; i < N; i++){ auto p = partition_point(index.begin(), index.end(), [&](ll j){ return A[j] <= B[i]; }); if(p == index.end()) continue; g.add_edge(i, *p + N, 1, 0); } for(ll i = 0; i + 1 < N; i++) g.add_edge(index[i] + N, index[i + 1] + N, N, 0); for(ll i = 0; i < N; i++) g.add_edge(i + N, i + N * 3, 1, -C[i]); sort(index.begin(), index.end(), [&](ll x, ll y){ return C[x] > C[y]; }); for(ll i = 0; i < N; i++){ auto p = partition_point(index.begin(), index.end(), [&](ll j){ return C[j] >= B[i]; }); if(p == index.end()) continue; g.add_edge(i, *p + N * 2, 1, -B[i]); } for(ll i = 0; i + 1 < N; i++) g.add_edge(index[i] + N * 2, index[i + 1] + N * 2, N, 0); for(ll i = 0; i < N; i++) g.add_edge(i + N * 2, i + N * 3, 1, 0); for(ll i = 0; i < N; i++) g.add_edge(i + N * 3, T, 1, 0); ll ans = g.min_cost_flow(S, T, N); if(ans == -1) return puts("NO") & 0; puts("YES"); puts(-ans >= M ? "KADOMATSU!" : "NO"); }