#line 1 "atcoder-workspace/177.cc" // #undef _GLIBCXX_DEBUG // #define NDEBUG #include #line 2 "Library/lib/alias" /** * @file alias * @brief Alias */ #line 13 "Library/lib/alias" #line 1 "Library/lib/bit" #if __cplusplus > 201703L #include #else #ifndef _GLIBCXX_BIT #define _GLIBCXX_BIT 1 #include #include namespace std { template constexpr _Tp __rotl(_Tp __x, int __s) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; const int __r = __s % _Nd; if (__r == 0) return __x; else if (__r > 0) return (__x << __r) | (__x >> ((_Nd - __r) % _Nd)); else return (__x >> -__r) | (__x << ((_Nd + __r) % _Nd)); // rotr(x, -r) } template constexpr _Tp __rotr(_Tp __x, int __s) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; const int __r = __s % _Nd; if (__r == 0) return __x; else if (__r > 0) return (__x >> __r) | (__x << ((_Nd - __r) % _Nd)); else return (__x << -__r) | (__x >> ((_Nd + __r) % _Nd)); // rotl(x, -r) } template constexpr int __countl_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) { constexpr int __diff = _Nd_u - _Nd; return __builtin_clz(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) { constexpr int __diff = _Nd_ul - _Nd; return __builtin_clzl(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) { constexpr int __diff = _Nd_ull - _Nd; return __builtin_clzll(__x) - __diff; } else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); unsigned long long __high = __x >> _Nd_ull; if (__high != 0) { constexpr int __diff = (2 * _Nd_ull) - _Nd; return __builtin_clzll(__high) - __diff; } constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; return (_Nd - _Nd_ull) + __builtin_clzll(__low); } } template constexpr int __countl_one(_Tp __x) noexcept { if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits; return __countl_zero<_Tp>((_Tp)~__x); } template constexpr int __countr_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) return __builtin_ctz(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) return __builtin_ctzl(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) return __builtin_ctzll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; if (__low != 0) return __builtin_ctzll(__low); unsigned long long __high = __x >> _Nd_ull; return __builtin_ctzll(__high) + _Nd_ull; } } template constexpr int __countr_one(_Tp __x) noexcept { if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits; return __countr_zero((_Tp)~__x); } template constexpr int __popcount(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) return __builtin_popcount(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) return __builtin_popcountl(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) return __builtin_popcountll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; unsigned long long __high = __x >> _Nd_ull; return __builtin_popcountll(__low) + __builtin_popcountll(__high); } } template constexpr bool __has_single_bit(_Tp __x) noexcept { return __popcount(__x) == 1; } template constexpr _Tp __bit_ceil(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0 || __x == 1) return 1; auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u)); #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (!__builtin_is_constant_evaluated()) { __glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits); } #endif using __promoted_type = decltype(__x << 1); if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) { const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2; __shift_exponent |= (__shift_exponent & _Nd) << __extra_exp; } return (_Tp)1u << __shift_exponent; } template constexpr _Tp __bit_floor(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1))); } template constexpr _Tp __bit_width(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; return _Nd - __countl_zero(__x); } } // namespace std #endif #endif #line 15 "Library/lib/alias" namespace workspace { constexpr char eol = '\n'; using namespace std; using i32 = int_least32_t; using u32 = uint_least32_t; using i64 = int_least64_t; using u64 = uint_least64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; using u128 = __uint128_t; #else #warning 128bit integer is not available. #endif template > using priority_queue = std::priority_queue, Comp>; template using stack = std::stack>; template constexpr _Tp __bsf(_Tp __x) noexcept { return std::__countr_zero(__x); } template constexpr _Tp __bsr(_Tp __x) noexcept { return std::__bit_width(__x) - 1; } } // namespace workspace #line 2 "Library/lib/cxx20" /* * @file cxx20 * @brief C++20 Features */ #line 1 "Library/lib/bit" #if __cplusplus > 201703L #include #else #ifndef _GLIBCXX_BIT #define _GLIBCXX_BIT 1 #include #include namespace std { template constexpr _Tp __rotl(_Tp __x, int __s) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; const int __r = __s % _Nd; if (__r == 0) return __x; else if (__r > 0) return (__x << __r) | (__x >> ((_Nd - __r) % _Nd)); else return (__x >> -__r) | (__x << ((_Nd + __r) % _Nd)); // rotr(x, -r) } template constexpr _Tp __rotr(_Tp __x, int __s) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; const int __r = __s % _Nd; if (__r == 0) return __x; else if (__r > 0) return (__x >> __r) | (__x << ((_Nd - __r) % _Nd)); else return (__x << -__r) | (__x >> ((_Nd + __r) % _Nd)); // rotl(x, -r) } template constexpr int __countl_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) { constexpr int __diff = _Nd_u - _Nd; return __builtin_clz(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) { constexpr int __diff = _Nd_ul - _Nd; return __builtin_clzl(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) { constexpr int __diff = _Nd_ull - _Nd; return __builtin_clzll(__x) - __diff; } else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); unsigned long long __high = __x >> _Nd_ull; if (__high != 0) { constexpr int __diff = (2 * _Nd_ull) - _Nd; return __builtin_clzll(__high) - __diff; } constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; return (_Nd - _Nd_ull) + __builtin_clzll(__low); } } template constexpr int __countl_one(_Tp __x) noexcept { if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits; return __countl_zero<_Tp>((_Tp)~__x); } template constexpr int __countr_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) return __builtin_ctz(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) return __builtin_ctzl(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) return __builtin_ctzll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; if (__low != 0) return __builtin_ctzll(__low); unsigned long long __high = __x >> _Nd_ull; return __builtin_ctzll(__high) + _Nd_ull; } } template constexpr int __countr_one(_Tp __x) noexcept { if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits; return __countr_zero((_Tp)~__x); } template constexpr int __popcount(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) return __builtin_popcount(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) return __builtin_popcountl(__x); else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) return __builtin_popcountll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; unsigned long long __high = __x >> _Nd_ull; return __builtin_popcountll(__low) + __builtin_popcountll(__high); } } template constexpr bool __has_single_bit(_Tp __x) noexcept { return __popcount(__x) == 1; } template constexpr _Tp __bit_ceil(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0 || __x == 1) return 1; auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u)); #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (!__builtin_is_constant_evaluated()) { __glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits); } #endif using __promoted_type = decltype(__x << 1); if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) { const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2; __shift_exponent |= (__shift_exponent & _Nd) << __extra_exp; } return (_Tp)1u << __shift_exponent; } template constexpr _Tp __bit_floor(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1))); } template constexpr _Tp __bit_width(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; return _Nd - __countl_zero(__x); } } // namespace std #endif #endif #line 9 "Library/lib/cxx20" #if __cplusplus <= 201703L #include #include namespace std { /* * @fn erase_if * @brief Erase the elements of a container that do not satisfy the condition. * @param __cont Container. * @param __pred Predicate. * @return Number of the erased elements. */ template inline typename vector<_Tp, _Alloc>::size_type erase_if( vector<_Tp, _Alloc>& __cont, _Predicate __pred) { const auto __osz = __cont.size(); __cont.erase(remove_if(__cont.begin(), __cont.end(), __pred), __cont.end()); return __osz - __cont.size(); } /* * @fn erase * @brief Erase the elements of a container that are equal to the given value. * @param __cont Container. * @param __value Value. * @return Number of the erased elements. */ template inline typename vector<_Tp, _Alloc>::size_type erase( vector<_Tp, _Alloc>& __cont, const _Up& __value) { const auto __osz = __cont.size(); __cont.erase(remove(__cont.begin(), __cont.end(), __value), __cont.end()); return __osz - __cont.size(); } } // namespace std #endif #line 2 "Library/lib/direct" /* * @file direct * @brief Pragma Directive */ #ifdef ONLINE_JUDGE #pragma GCC optimize("O3") #pragma GCC target("avx,avx2") #pragma GCC optimize("unroll-loops") #endif #line 2 "Library/src/opt/binary_search.hpp" /* * @file binary_search.hpp * @brief Binary Search */ #line 12 "Library/src/opt/binary_search.hpp" namespace workspace { /* * @fn binary_search * @brief binary search on a discrete range. * @param ok pred(ok) is true * @param ng pred(ng) is false * @param pred the predicate * @return the closest point to (ng) where pred is true */ template typename std::enable_if< std::is_convertible()(std::declval())), bool>::value, Iter>::type binary_search(Iter ok, Iter ng, Pred pred) { assert(ok != ng); typename std::make_signed::type dist(ng - ok); while (1 < dist || dist < -1) { const Iter mid(ok + dist / 2); if (pred(mid)) ok = mid, dist -= dist / 2; else ng = mid, dist /= 2; } return ok; } /* * @fn binary_search * @brief binary search on the real number line. * @param ok pred(ok) is true * @param ng pred(ng) is false * @param eps the error tolerance * @param pred the predicate * @return the boundary point */ template typename std::enable_if< std::is_convertible()(std::declval())), bool>::value, Real>::type binary_search(Real ok, Real ng, const Real eps, Pred pred) { assert(ok != ng); for (auto loops = 0; loops != std::numeric_limits::digits && (ok + eps < ng || ng + eps < ok); ++loops) { const Real mid{(ok + ng) / 2}; (pred(mid) ? ok : ng) = mid; } return ok; } /* * @fn parallel_binary_search * @brief parallel binary search on discrete ranges. * @param ends a vector of pairs; pred(first) is true, pred(second) is false * @param pred the predicate * @return the closest points to (second) where pred is true */ template (std::declval()[0]))>::type, class Pred> typename std::enable_if< std::is_convertible< decltype(std::declval()(std::declval>())[0]), bool>::value, std::vector>::type parallel_binary_search(Array ends, Pred pred) { std::vector mids(std::size(ends)); for (;;) { bool all_found = true; for (size_t i{}; i != std::size(ends); ++i) { const Iter &ok = std::get<0>(ends[i]); const Iter &ng = std::get<1>(ends[i]); const Iter mid( ok + typename std::make_signed::type(ng - ok) / 2); if (mids[i] != mid) { all_found = false; mids[i] = mid; } } if (all_found) break; const auto res = pred(mids); for (size_t i{}; i != std::size(ends); ++i) { (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i]; } } return mids; } /* * @fn parallel_binary_search * @brief parallel binary search on the real number line. * @param ends a vector of pairs; pred(first) is true, pred(second) is false * @param eps the error tolerance * @param pred the predicate * @return the boundary points */ template (std::declval()[0]))>::type, class Pred> typename std::enable_if< std::is_convertible< decltype(std::declval()(std::declval>())[0]), bool>::value, std::vector>::type parallel_binary_search(Array ends, const Real eps, Pred pred) { std::vector mids(std::size(ends)); for (auto loops = 0; loops != std::numeric_limits::digits; ++loops) { bool all_found = true; for (size_t i{}; i != std::size(ends); ++i) { const Real ok = std::get<0>(ends[i]); const Real ng = std::get<1>(ends[i]); if (ok + eps < ng || ng + eps < ok) { all_found = false; mids[i] = (ok + ng) / 2; } } if (all_found) break; const auto res = pred(mids); for (size_t i{}; i != std::size(ends); ++i) { (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i]; } } return mids; } } // namespace workspace #line 2 "Library/src/opt/exponential_search.hpp" /* * @file exponential_search.hpp * @brief Exponential Search */ #line 9 "Library/src/opt/exponential_search.hpp" namespace workspace { /* * @fn exponential_search * @brief Exponential search on a discrete range. * @param range Range of search, exclusive * @param pred Predicate * @return Minimum non-negative integer where pred is false. */ template typename std::enable_if< std::is_convertible()(std::declval())), bool>::value, Index>::type exponential_search(Index range, Pred pred) { Index step(1); while (step < range && pred(step)) step <<= 1; if (range < step) step = range; return binary_search(Index(0), step, pred); } /* * @fn exponential_search * @brief Exponential search on the real number line. * @param range Range of search * @param eps Error tolerance * @param pred Predicate * @return Boundary point. */ template typename std::enable_if< std::is_convertible()(std::declval())), bool>::value, Real>::type exponential_search(Real range, Real const &eps, Pred pred) { Real step(1); while (step < range && pred(step)) step += step; if (range < step) step = range; return binary_search(Real(0), step, eps, pred); } } // namespace workspace #line 2 "Library/src/opt/trinary_search.hpp" /* * @file trinary_search.hpp * @brief Trinary Search */ #line 9 "Library/src/opt/trinary_search.hpp" #include namespace workspace { /* * @brief Trinary search on discrete range. * @param first Left end, inclusive * @param last Right end, exclusive * @param comp Compare function * @return Local minimal point. */ template typename std::enable_if< std::is_convertible()(std::declval(), std::declval())), bool>::value, Iter>::type trinary_search(Iter first, Iter last, Comp comp) { assert(first < last); typename std::make_signed::type dist(last - first); while (2 < dist) { Iter left(first + dist / 3), right(first + dist * 2 / 3); if (comp(left, right)) last = right, dist = (dist + dist) / 3; else first = left, dist -= dist / 3; } if (1 < dist && comp(first + 1, first)) ++first; return first; } /* * @brief Trinary search on discrete range. * @param first Left end, inclusive * @param last Right end, exclusive * @param func Function * @return Local minimal point. */ template typename std::enable_if< std::is_same()(std::declval()), nullptr), std::nullptr_t>::value, Iter>::type trinary_search(Iter const &first, Iter const &last, Func func) { return trinary_search(first, last, [&](Iter const &__i, Iter const &__j) { return func(__i) < func(__j); }); } /* * @brief Trinary search on the real number line. * @param first Left end * @param last Right end * @param eps Error tolerance * @param comp Compare function * @return Local minimal point. */ template typename std::enable_if< std::is_convertible()(std::declval(), std::declval())), bool>::value, Real>::type trinary_search(Real first, Real last, Real const &eps, Comp comp) { assert(first < last); while (eps < last - first) { Real left{(first * 2 + last) / 3}, right{(first + last * 2) / 3}; if (comp(left, right)) last = right; else first = left; } return first; } /* * @brief Trinary search on the real number line. * @param first Left end * @param last Right end * @param eps Error tolerance * @param func Function * @return Local minimal point. */ template typename std::enable_if< std::is_same()(std::declval()), nullptr), std::nullptr_t>::value, Real>::type trinary_search(Real const &first, Real const &last, Real const &eps, Func func) { return trinary_search( first, last, eps, [&](Real const &__i, Real const &__j) { return func(__i) < func(__j); }); } } // namespace workspace #line 2 "Library/src/sys/clock.hpp" /* * @fn clock.hpp * @brief Clock */ #line 9 "Library/src/sys/clock.hpp" namespace workspace { using namespace std::chrono; namespace internal { // The start time of the program. const auto start_time{system_clock::now()}; } // namespace internal /* * @fn elapsed * @return elapsed time of the program */ int64_t elapsed() { const auto end_time{system_clock::now()}; return duration_cast(end_time - internal::start_time).count(); } } // namespace workspace #line 2 "Library/src/sys/ejection.hpp" /** * @file ejection.hpp * @brief Ejection */ #line 9 "Library/src/sys/ejection.hpp" namespace workspace { namespace internal { struct ejection { bool exit = 0; }; } // namespace internal /** * @brief eject from a try block, throw nullptr * @param arg output */ template void eject(Tp const &arg) { std::cout << arg << "\n"; throw internal::ejection{}; } void exit() { throw internal::ejection{true}; } } // namespace workspace #line 2 "Library/src/sys/iteration.hpp" /** * @file iteration.hpp * @brief Case Iteration */ #line 9 "Library/src/sys/iteration.hpp" #line 11 "Library/src/sys/iteration.hpp" namespace workspace { void main(); struct { // 1-indexed unsigned current{0}; unsigned total{1}; void read() { (std::cin >> total).ignore(); } int iterate() { static bool once = false; assert(!once); once = true; while (current++ < total) { try { main(); } catch (internal::ejection const& status) { if (status.exit) break; } } return 0; } } case_info; } // namespace workspace #line 2 "Library/src/utils/cat.hpp" /** * @file cat.hpp * @brief Cat */ #line 9 "Library/src/utils/cat.hpp" namespace workspace { template constexpr C1 &&cat(C1 &&__c1, C2 const &__c2) noexcept { __c1.insert(__c1.end(), std::begin(__c2), std::end(__c2)); return __c1; } } // namespace workspace #line 2 "Library/src/utils/chval.hpp" /* * @file chval.hpp * @brief Change Less/Greater */ #line 9 "Library/src/utils/chval.hpp" namespace workspace { /* * @fn chle * @brief Substitute y for x if comp(y, x) is true. * @param x Reference * @param y Const reference * @param comp Compare function * @return Whether or not x is updated */ template > bool chle(Tp &x, const Tp &y, Comp comp = Comp()) { return comp(y, x) ? x = y, true : false; } /* * @fn chge * @brief Substitute y for x if comp(x, y) is true. * @param x Reference * @param y Const reference * @param comp Compare function * @return Whether or not x is updated */ template > bool chge(Tp &x, const Tp &y, Comp comp = Comp()) { return comp(x, y) ? x = y, true : false; } } // namespace workspace #line 2 "Library/src/utils/fixed_point.hpp" /* * @file fixed_point.hpp * @brief Fixed Point Combinator */ #line 9 "Library/src/utils/fixed_point.hpp" namespace workspace { /* * @class fixed_point * @brief Recursive calling of lambda expression. */ template class fixed_point { lambda_type func; public: /* * @param func 1st arg callable with the rest of args, and the return type * specified. */ fixed_point(lambda_type &&func) : func(std::move(func)) {} /* * @brief Recursively apply *this to 1st arg of func. * @param args Arguments of the recursive method. */ template auto operator()(Args &&... args) const { return func(*this, std::forward(args)...); } }; } // namespace workspace #line 2 "Library/src/utils/grid.hpp" /** * @file grid.hpp * @brief Grid * @date 2021-01-09 */ #line 10 "Library/src/utils/grid.hpp" namespace workspace { template Grid transpose(Grid const &grid) { Grid __t; for (auto &&__r : grid) { auto __i = std::begin(__t); for (auto &&__x : __r) { if (__i == std::end(__t)) __i = __t.insert(__t.end(), typename std::decay::type{}); __i->insert(__i->end(), __x); ++__i; } } return __t; } // template // std::array, _Col> transpose(_Tp (&__g)[_Row][_Col]) {} template Grid roll_ccw(Grid const &grid) { auto __t = transpose(grid); std::reverse(std::begin(__t), std::end(__t)); return __t; } template Grid roll_cw(Grid const &grid) { auto __t = grid; std::reverse(std::begin(__t), std::end(__t)); return transpose(__t); } } // namespace workspace #line 2 "Library/src/utils/hash.hpp" #line 8 "Library/src/utils/hash.hpp" #line 2 "Library/src/utils/sfinae.hpp" /** * @file sfinae.hpp * @brief SFINAE */ #line 11 "Library/src/utils/sfinae.hpp" #ifdef __SIZEOF_INT128__ #define __INT128_DEFINED__ 1 #else #define __INT128_DEFINED__ 0 #endif namespace std { #if __INT128_DEFINED__ template <> struct make_signed<__uint128_t> { using type = __int128_t; }; template <> struct make_signed<__int128_t> { using type = __int128_t; }; template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; }; template <> struct make_unsigned<__int128_t> { using type = __uint128_t; }; #endif } // namespace std namespace workspace { template class trait> using enable_if_trait_type = typename std::enable_if::value>::type; template using element_type = typename std::decay()))>::type; template struct has_begin : std::false_type {}; template struct has_begin()), nullptr)> : std::true_type {}; template struct mapped_of { using type = element_type; }; template struct mapped_of::first_type> { using type = typename T::mapped_type; }; template using mapped_type = typename mapped_of::type; template struct is_integral_ext : std::false_type {}; template struct is_integral_ext< T, typename std::enable_if::value>::type> : std::true_type {}; #if __INT128_DEFINED__ template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #endif #if __cplusplus >= 201402 template constexpr static bool is_integral_ext_v = is_integral_ext::value; #endif template struct multiplicable_uint { using type = uint_least32_t; }; template struct multiplicable_uint< T, typename std::enable_if<(2 < sizeof(T)) && (!__INT128_DEFINED__ || sizeof(T) <= 4)>::type> { using type = uint_least64_t; }; #if __INT128_DEFINED__ template struct multiplicable_uint::type> { using type = __uint128_t; }; #endif template struct multiplicable_int { using type = typename std::make_signed::type>::type; }; } // namespace workspace #line 10 "Library/src/utils/hash.hpp" namespace workspace { template struct hash : std::hash {}; #if __cplusplus >= 201703L template struct hash> { size_t operator()(uint64_t x) const { static const uint64_t m = std::random_device{}(); x ^= x >> 23; x ^= m; x ^= x >> 47; return x - (x >> 32); } }; #endif template size_t hash_combine(const size_t &seed, const Key &key) { return seed ^ (hash()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */); } template struct hash> { size_t operator()(const std::pair &pair) const { return hash_combine(hash()(pair.first), pair.second); } }; template class hash> { template ::value - 1> struct tuple_hash { static uint64_t apply(const Tuple &t) { return hash_combine(tuple_hash::apply(t), std::get(t)); } }; template struct tuple_hash { static uint64_t apply(const Tuple &t) { return 0; } }; public: uint64_t operator()(const std::tuple &t) const { return tuple_hash>::apply(t); } }; template struct hash_table_wrapper : hash_table { using key_type = typename hash_table::key_type; size_t count(const key_type &key) const { return hash_table::find(key) != hash_table::end(); } template auto emplace(Args &&... args) { return hash_table::insert(typename hash_table::value_type(args...)); } }; template using cc_hash_table = hash_table_wrapper<__gnu_pbds::cc_hash_table>>; template using gp_hash_table = hash_table_wrapper<__gnu_pbds::gp_hash_table>>; template using unordered_map = std::unordered_map>; template using unordered_set = std::unordered_set>; } // namespace workspace #line 2 "Library/src/utils/io/istream.hpp" /** * @file istream.hpp * @brief Input Stream */ #include #line 13 "Library/src/utils/io/istream.hpp" #line 15 "Library/src/utils/io/istream.hpp" namespace workspace { namespace internal { template struct istream_helper { istream_helper(std::istream &is, Tp &x) { if constexpr (has_begin::value) for (auto &&e : x) istream_helper::type>(is, e); else static_assert(has_begin::value, "istream unsupported type."); } }; template struct istream_helper< Tp, decltype(std::declval() >> std::declval())>>(), nullptr)> { istream_helper(std::istream &is, Tp &x) { is >> x; } }; #ifdef __SIZEOF_INT128__ template <> struct istream_helper<__int128_t, std::nullptr_t> { istream_helper(std::istream &is, __int128_t &x) { std::string s; is >> s; bool negative = s.front() == '-' ? s.erase(s.begin()), true : false; x = 0; for (char e : s) x = x * 10 + e - '0'; if (negative) x = -x; } }; template <> struct istream_helper<__uint128_t, std::nullptr_t> { istream_helper(std::istream &is, __uint128_t &x) { std::string s; is >> s; bool negative = s.front() == '-' ? s.erase(s.begin()), true : false; x = 0; for (char e : s) x = x * 10 + e - '0'; if (negative) x = -x; } }; #endif // INT128 template struct istream_helper> { istream_helper(std::istream &is, std::pair &x) { istream_helper(is, x.first), istream_helper(is, x.second); } }; template struct istream_helper> { istream_helper(std::istream &is, std::tuple &x) { iterate(is, x); } private: template void iterate(std::istream &is, Tp &x) { if constexpr (N == std::tuple_size::value) return; else istream_helper::type>(is, std::get(x)), iterate(is, x); } }; } // namespace internal /** * @brief A wrapper class for std::istream. */ class istream : public std::istream { public: /** * @brief Wrapped operator. */ template istream &operator>>(Tp &x) { internal::istream_helper(*this, x); if (std::istream::fail()) { static auto once = atexit([] { std::cerr << "\n\033[43m\033[30mwarning: failed to read \'" << abi::__cxa_demangle(typeid(Tp).name(), 0, 0, 0) << "\'.\033[0m\n\n"; }); assert(!once); } return *this; } }; namespace internal { auto *const cin_ptr = (istream *)&std::cin; } auto &cin = *internal::cin_ptr; } // namespace workspace #line 2 "Library/src/utils/io/ostream.hpp" /* * @file ostream.hpp * @brief Output Stream */ #line 10 "Library/src/utils/io/ostream.hpp" namespace workspace { template std::ostream &operator<<(std::ostream &os, const std::pair &p) { return os << p.first << ' ' << p.second; } template struct tuple_os { static std::ostream &apply(std::ostream &os, const tuple_t &t) { tuple_os::apply(os, t); return os << ' ' << std::get(t); } }; template struct tuple_os { static std::ostream &apply(std::ostream &os, const tuple_t &t) { return os << std::get<0>(t); } }; template struct tuple_os { static std::ostream &apply(std::ostream &os, const tuple_t &t) { return os; } }; template std::ostream &operator<<(std::ostream &os, const std::tuple &t) { return tuple_os, std::tuple_size>::value - 1>::apply(os, t); } template ()))> typename std::enable_if< !std::is_same::type, std::string>::value && !std::is_same::type, char *>::value, std::ostream &>::type operator<<(std::ostream &os, const Container &cont) { bool head = true; for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e; return os; } } // namespace workspace #line 9 "Library/lib/utils" // #include "src/utils/io/read.hpp" #line 2 "Library/src/utils/io/setup.hpp" /* * @file setup.hpp * @brief I/O Setup */ #line 10 "Library/src/utils/io/setup.hpp" namespace workspace { /* * @fn io_setup * @brief Setup I/O. * @param precision Standard output precision */ void io_setup(int precision) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); #ifdef _buffer_check atexit([] { char bufc; if (std::cin >> bufc) std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n"; }); #endif } } // namespace workspace #line 2 "Library/src/utils/iterator/category.hpp" /* * @file category.hpp * @brief Iterator Category */ #line 10 "Library/src/utils/iterator/category.hpp" namespace workspace { /* * @tparam Tuple Tuple of iterator types */ template ::value - 1> struct common_iterator_category { using type = typename std::common_type< typename common_iterator_category::type, typename std::iterator_traits::type>::iterator_category>::type; }; template struct common_iterator_category { using type = typename std::iterator_traits< typename std::tuple_element<0, Tuple>::type>::iterator_category; }; } // namespace workspace #line 2 "Library/src/utils/iterator/reverse.hpp" /* * @file reverse_iterator.hpp * @brief Reverse Iterator */ #if __cplusplus >= 201703L #include #include namespace workspace { /* * @class reverse_iterator * @brief Wrapper class for `std::reverse_iterator`. * @see http://gcc.gnu.org/PR51823 */ template class reverse_iterator : public std::reverse_iterator { using base_std = std::reverse_iterator; std::optional deref; public: using base_std::reverse_iterator; constexpr typename base_std::reference operator*() noexcept { if (!deref) { Iterator tmp = base_std::current; deref = *--tmp; } return deref.value(); } constexpr reverse_iterator &operator++() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator &operator--() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator++(int) noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator--(int) noexcept { base_std::operator++(); deref.reset(); return *this; } }; } // namespace workspace #endif #line 2 "Library/src/utils/make_vector.hpp" /* * @file make_vector.hpp * @brief Multi-dimensional Vector */ #if __cplusplus >= 201703L #include #include namespace workspace { /* * @brief Make a multi-dimensional vector. * @tparam Tp type of the elements * @tparam N dimension * @tparam S integer type * @param sizes The size of each dimension * @param init The initial value */ template constexpr auto make_vector([[maybe_unused]] S* sizes, Tp const& init = Tp()) { static_assert(std::is_convertible_v); if constexpr (N) return std::vector(*sizes, make_vector(std::next(sizes), init)); else return init; } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template constexpr auto make_vector(const S (&sizes)[N], Tp const& init = Tp()) { return make_vector((S*)sizes, init); } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template constexpr auto make_vector([[maybe_unused]] std::array const& sizes, Tp const& init = Tp()) { static_assert(std::is_convertible_v); if constexpr (I == N) return init; else return std::vector(sizes[I], make_vector(sizes, init)); } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template constexpr auto make_vector([[maybe_unused]] std::tuple const& sizes, Tp const& init = Tp()) { using tuple_type = std::tuple; if constexpr (I == std::tuple_size_v || I == N) return init; else { static_assert( std::is_convertible_v, size_t>); return std::vector(std::get(sizes), make_vector(sizes, init)); } } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template constexpr auto make_vector(std::pair const& sizes, Tp const& init = Tp()) { static_assert(std::is_convertible_v); static_assert(std::is_convertible_v); return make_vector({(size_t)sizes.first, (size_t)sizes.second}, init); } } // namespace workspace #endif #line 14 "Library/lib/utils" // #include "src/utils/py-like/enumerate.hpp" #line 2 "Library/src/utils/py-like/range.hpp" /** * @file range.hpp * @brief Range */ #line 9 "Library/src/utils/py-like/range.hpp" #line 2 "Library/src/utils/py-like/reversed.hpp" /** * @file reversed.hpp * @brief Reversed */ #include #line 10 "Library/src/utils/py-like/reversed.hpp" namespace workspace { namespace internal { template class reversed { Container cont; public: constexpr reversed(Container &&cont) : cont(cont) {} constexpr auto begin() { return std::rbegin(cont); } constexpr auto end() { return std::rend(cont); } }; } // namespace internal template constexpr auto reversed(Container &&cont) noexcept { return internal::reversed{std::forward(cont)}; } template constexpr auto reversed(std::initializer_list &&cont) noexcept { return internal::reversed>{ std::forward>(cont)}; } } // namespace workspace #line 12 "Library/src/utils/py-like/range.hpp" #if __cplusplus >= 201703L namespace workspace { template class range { Index first, last; public: class iterator { Index current; public: using difference_type = std::ptrdiff_t; using value_type = Index; using reference = typename std::add_const::type &; using pointer = iterator; using iterator_category = std::bidirectional_iterator_tag; constexpr iterator(Index const &__i = Index()) noexcept : current(__i) {} constexpr bool operator==(iterator const &rhs) const noexcept { return current == rhs.current; } constexpr bool operator!=(iterator const &rhs) const noexcept { return current != rhs.current; } constexpr iterator &operator++() noexcept { ++current; return *this; } constexpr iterator &operator--() noexcept { --current; return *this; } constexpr reference operator*() const noexcept { return current; } }; constexpr range(Index first, Index last) noexcept : first(first), last(last) {} constexpr range(Index last) noexcept : first(), last(last) {} constexpr iterator begin() const noexcept { return iterator{first}; } constexpr iterator end() const noexcept { return iterator{last}; } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); } constexpr reverse_iterator rend() const noexcept { return reverse_iterator(begin()); } }; template constexpr auto rrange(Args &&... args) noexcept { return internal::reversed(range(std::forward(args)...)); } } // namespace workspace #endif #line 17 "Library/lib/utils" // #include "src/utils/py-like/zip.hpp" #line 2 "Library/src/utils/rand/rng.hpp" /** * @file rng.hpp * @brief Random Number Generator */ #line 9 "Library/src/utils/rand/rng.hpp" namespace workspace { template using uniform_distribution = typename std::conditional::value, std::uniform_int_distribution, std::uniform_real_distribution>::type; template class random_number_generator : uniform_distribution { using base = uniform_distribution; std::mt19937 engine; public: template random_number_generator(Args&&... args) : base(args...), engine(std::random_device{}()) {} auto operator()() { return base::operator()(engine); } }; } // namespace workspace #line 2 "Library/src/utils/rand/shuffle.hpp" /** * @file shuffle.hpp * @brief Shuffle */ #line 10 "Library/src/utils/rand/shuffle.hpp" namespace workspace { template void shuffle(RAIter const& __first, RAIter const& __last) { static std::mt19937 engine(std::random_device{}()); std::shuffle(__first, __last, engine); } } // namespace workspace #line 2 "Library/src/utils/round_div.hpp" /* * @file round_div.hpp * @brief Round Integer Division */ #line 9 "Library/src/utils/round_div.hpp" #line 11 "Library/src/utils/round_div.hpp" namespace workspace { /* * @fn floor_div * @brief floor of fraction. * @param x the numerator * @param y the denominator * @return maximum integer z s.t. z <= x / y * @note y must be nonzero. */ template constexpr typename std::enable_if<(is_integral_ext::value && is_integral_ext::value), typename std::common_type::type>::type floor_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? (x - y + 1) / y : x / y; } /* * @fn ceil_div * @brief ceil of fraction. * @param x the numerator * @param y the denominator * @return minimum integer z s.t. z >= x / y * @note y must be nonzero. */ template constexpr typename std::enable_if<(is_integral_ext::value && is_integral_ext::value), typename std::common_type::type>::type ceil_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? x / y : (x + y - 1) / y; } } // namespace workspace #line 11 "atcoder-workspace/177.cc" signed main() { using namespace workspace; io_setup(15); /* given case_info.read(); //*/ /* unspecified case_info.total = -1; //*/ return case_info.iterate(); } #line 2 "Library/src/modular/inverse.hpp" /* * @file inverse.hpp * @brief Inverse Table */ #line 9 "Library/src/modular/inverse.hpp" #line 2 "Library/src/modular/modint.hpp" /** * @file modint.hpp * * @brief Modular Arithmetic */ #line 12 "Library/src/modular/modint.hpp" #line 14 "Library/src/modular/modint.hpp" namespace workspace { namespace internal { /** * @brief Base of modular arithmetic. * * @tparam Mod identifier, which represents modulus if positive * @tparam Storage Reserved size for inverse calculation */ template struct modint_base { static_assert(is_integral_ext::value, "Mod must be integral type."); using mod_type = typename std::make_signed::type, decltype(Mod)>::type>::type; using value_type = typename std::decay::type; using mul_type = typename multiplicable_uint::type; static mod_type mod; static value_type storage; constexpr static void reserve(unsigned __n) noexcept { storage = __n; } protected: value_type value = 0; public: constexpr modint_base() noexcept = default; template ::value>::type * = nullptr> constexpr modint_base(int_type n) noexcept : value((n %= mod) < 0 ? n += mod : n) {} constexpr modint_base(bool n) noexcept : value(n) {} constexpr operator value_type() const noexcept { return value; } constexpr static modint_base one() noexcept { return 1; } // unary operators {{ constexpr modint_base operator++(int) noexcept { modint_base __t{*this}; operator++(); return __t; } constexpr modint_base operator--(int) noexcept { modint_base __t{*this}; operator--(); return __t; } constexpr modint_base &operator++() noexcept { if (++value == mod) value = 0; return *this; } constexpr modint_base &operator--() noexcept { if (!value) value = mod; --value; return *this; } constexpr modint_base operator-() const noexcept { modint_base __t; __t.value = value ? mod - value : 0; return __t; } // }} unary operators // operator+= {{ constexpr modint_base &operator+=(modint_base const &rhs) noexcept { if ((value += rhs.value) >= mod) value -= mod; return *this; } template constexpr typename std::enable_if::value, modint_base>::type & operator+=(int_type const &rhs) noexcept { if (((value += rhs) %= mod) < 0) value += mod; return *this; } // }} operator+= // operator+ {{ template constexpr typename std::enable_if::value, modint_base>::type operator+(int_type const &rhs) const noexcept { return modint_base{*this} += rhs; } constexpr modint_base operator+(modint_base rhs) const noexcept { return rhs += *this; } template constexpr friend typename std::enable_if::value, modint_base>::type operator+(int_type const &lhs, modint_base rhs) noexcept { return rhs += lhs; } // }} operator+ // operator-= {{ constexpr modint_base &operator-=(modint_base const &rhs) noexcept { if ((value -= rhs.value) < 0) value += mod; return *this; } template constexpr typename std::enable_if::value, modint_base>::type & operator-=(int_type rhs) noexcept { if (((value -= rhs) %= mod) < 0) value += mod; return *this; } // }} operator-= // operator- {{ template constexpr typename std::enable_if::value, modint_base>::type operator-(int_type const &rhs) const noexcept { return modint_base{*this} -= rhs; } constexpr modint_base operator-(modint_base const &rhs) const noexcept { modint_base __t; if (((__t.value = value) -= rhs.value) < 0) __t.value += mod; return __t; } template constexpr friend typename std::enable_if::value, modint_base>::type operator-(int_type lhs, modint_base const &rhs) noexcept { if (((lhs -= rhs.value) %= mod) < 0) lhs += mod; modint_base __t; __t.value = lhs; return __t; } // }} operator- // operator*= {{ constexpr modint_base &operator*=(modint_base const &rhs) noexcept { if (!rhs.value) value = 0; else if (value) { mul_type __r(value); value = static_cast((__r *= rhs.value) %= mod); } return *this; } template constexpr typename std::enable_if::value, modint_base>::type & operator*=(int_type rhs) noexcept { if (!rhs) value = 0; else if (value) { if ((rhs %= mod) < 0) rhs += mod; mul_type __r(value); value = static_cast((__r *= rhs) %= mod); } return *this; } // }} operator*= // operator* {{ constexpr modint_base operator*(modint_base const &rhs) const noexcept { if (!value or !rhs.value) return {}; mul_type __r(value); modint_base __t; __t.value = static_cast((__r *= rhs.value) %= mod); return __t; } template constexpr typename std::enable_if::value, modint_base>::type operator*(int_type rhs) const noexcept { if (!value or !rhs) return {}; if ((rhs %= mod) < 0) rhs += mod; mul_type __r(value); modint_base __t; __t.value = static_cast((__r *= rhs) %= mod); return __t; } template constexpr friend typename std::enable_if::value, modint_base>::type operator*(int_type lhs, modint_base const &rhs) noexcept { if (!lhs or !rhs.value) return {}; if ((lhs %= mod) < 0) lhs += mod; mul_type __r(lhs); modint_base __t; __t.value = (__r *= rhs.value) %= mod; return __t; } // }} operator* protected: static value_type _mem(value_type __x) { static std::vector __m{0, 1}; static value_type __i = (__m.reserve(Storage), 1); while (__i < __x) { ++__i; __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod); } return __m[__x]; } template constexpr static typename std::enable_if::value, value_type>::type _div(mul_type __r, int_type __x) noexcept { assert(__x); if (!__r) return 0; int_type __v{}; bool __neg = __x < 0 ? __x = -__x, true : false; if (__x < storage) __v = _mem(__x); else { int_type __y{mod}, __u{1}, __t; while (__x) __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x, __v ^= __u ^= (__v -= __t * __u) ^= __u; if (__y < 0) __neg ^= 1; } if (__neg) __v = 0 < __v ? mod - __v : -__v; else if (__v < 0) __v += mod; if (__r == 1) return static_cast(__v); return static_cast((__r *= __v) %= mod); } public: // operator/= {{ constexpr modint_base &operator/=(modint_base const &rhs) noexcept { if (value) value = _div(value, rhs.value); return *this; } template constexpr typename std::enable_if::value, modint_base>::type & operator/=(int_type rhs) noexcept { if (value) value = _div(value, rhs %= mod); return *this; } // }} operator/= // operator/ {{ constexpr modint_base operator/(modint_base const &rhs) const noexcept { if (!value) return {}; modint_base __t; __t.value = _div(value, rhs.value); return __t; } template constexpr typename std::enable_if::value, modint_base>::type operator/(int_type rhs) const noexcept { if (!value) return {}; modint_base __t; __t.value = _div(value, rhs %= mod); return __t; } template constexpr friend typename std::enable_if::value, modint_base>::type operator/(int_type lhs, modint_base const &rhs) noexcept { if (!lhs) return {}; if ((lhs %= mod) < 0) lhs += mod; modint_base __t; __t.value = _div(lhs, rhs.value); return __t; } // }} operator/ constexpr modint_base inv() const noexcept { return _div(1, value); } template friend constexpr typename std::enable_if::value, modint_base>::type pow(modint_base b, int_type e) noexcept { if (e < 0) { e = -e; b.value = _div(1, b.value); } modint_base __r; for (__r.value = 1; e; e >>= 1, b *= b) if (e & 1) __r *= b; return __r; } template constexpr typename std::enable_if::value, modint_base>::type pow(int_type e) const noexcept { modint_base __r, b; __r.value = 1; for (b.value = e < 0 ? e = -e, _div(1, value) : value; e; e >>= 1, b *= b) if (e & 1) __r *= b; return __r; } friend std::ostream &operator<<(std::ostream &os, const modint_base &rhs) noexcept { return os << rhs.value; } friend std::istream &operator>>(std::istream &is, modint_base &rhs) noexcept { intmax_t value; rhs = (is >> value, value); return is; } }; template typename modint_base::mod_type modint_base::mod = Mod > 0 ? Mod : 0; template typename modint_base::value_type modint_base::storage = Storage; } // namespace internal /** * @brief Modular arithmetic. * * @tparam Mod modulus * @tparam Storage Reserved size for inverse calculation */ template 0)>::type * = nullptr> using modint = internal::modint_base; /** * @brief Runtime modular arithmetic. * * @tparam type_id uniquely assigned * @tparam Storage Reserved size for inverse calculation */ template using modint_runtime = internal::modint_base<-(signed)type_id, Storage>; // #define modint_newtype modint_runtime<__COUNTER__> } // namespace workspace #line 11 "Library/src/modular/inverse.hpp" namespace workspace { // Modulus must be prime. template struct inverse_table { static_assert(std::is_same::value); using value_type = Modint; constexpr value_type operator()(int n) const { constexpr int_fast64_t mod = value_type::mod; assert(n %= mod); if (n < 0) n += mod; if (inv.empty()) inv = {1, mod != 1}; for (int m(inv.size()); m <= n; ++m) inv.emplace_back(mod / m * -inv[mod % m]); return inv[n]; } private: static std::vector inv; }; template std::vector inverse_table::inv; } // namespace workspace #line 27 "atcoder-workspace/177.cc" namespace workspace { using mint = modint<998244353>; void main() { // start here! int n, q, p; cin >> n >> q >> p; vector a(n); cin >> a; const int m = ceil(sqrt(n + 1)); // const int m = 500; using bset = bitset<5000>; vector dp(m); // auto dp2(dp); for (auto k : range(m)) { dp[k].set(0); for (auto j : range(m)) { auto i = k * m + j; if (i >= n) break; dp[k] |= dp[k] << a[i] | dp[k] >> (p - a[i]); } // for (auto j : reversed(range(m))) { // auto i = k * m + j; // if (i >= n) continue; // dp2[i] = dp2[i + 1]; // dp2[i + 1] |= dp2[i] << a[i]; // dp2[i + 1] |= dp2[i] >> (p - a[i]); // } } vector dp3(m + 1, vector(m + 1)); for (auto x : range(m)) { for (auto y : rrange(x)) { auto &np = dp3[y][x] = dp3[y][x + 1]; np.set(0); for (auto x : range(p)) { if (dp[y][x]) { np |= np << x | np >> (p - x); } } } } while (q--) { int l, r, k; cin >> l >> r >> k; --l; bset np; np.set(0); while (l % m && l < r) { np |= np << a[l] | np >> (p - a[l]); ++l; } auto y = l / m, z = y - 1; while (l + m <= r) { l += m; ++z; } while (l < r) { np |= np << a[l] | np >> (p - a[l]); ++l; } if (~z) for (auto x : range(p)) { if (dp3[y][z][x]) { np |= np << x | np >> (p - x); } } cout << (np[k] ? "Yes" : "No") << "\n"; } } } // namespace workspace