#include int ri() { int n; scanf("%d", &n); return n; } template struct ModInt{ int x; ModInt () : x(0) {} ModInt (int64_t x) : x(x >= 0 ? x % mod : (mod - -x % mod) % mod) {} ModInt &operator += (const ModInt &p){ if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator -= (const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator *= (const ModInt &p) { x = (int64_t) x * p.x % mod; return *this; } ModInt &operator /= (const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator ^= (int64_t p) { ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator - () const { return ModInt(-x); } ModInt operator + (const ModInt &p) const { return ModInt(*this) += p; } ModInt operator - (const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator * (const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator / (const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator ^ (int64_t p) const { return ModInt(*this) ^= p; } bool operator == (const ModInt &p) const { return x == p.x; } bool operator != (const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } ModInt &operator = (const int p) { x = p; return *this;} ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream & operator << (std::ostream &stream, const ModInt &p) { return stream << p.x; } friend std::istream & operator >> (std::istream &stream, ModInt &a) { int64_t x; stream >> x; a = ModInt(x); return stream; } }; typedef ModInt<998244353> mint; template struct MComb { using mint = ModInt; std::vector fact; std::vector inv; MComb (int n) { // O(n + log(mod)) fact = std::vector(n + 1, 1); for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i); inv.resize(n + 1); inv[n] = fact[n] ^ (mod - 2); for (int i = n; i--; ) inv[i] = inv[i + 1] * mint(i + 1); } mint ncr(int n, int r) { return fact[n] * inv[r] * inv[n - r]; } mint npr(int n, int r) { return fact[n] * inv[n - r]; } mint nhr(int n, int r) { assert(n + r - 1 < (int) fact.size()); return ncr(n + r - 1, r); } }; int main() { int n = ri(); int l = ri(); int r = ri(); std::vector a(n); for (auto &i : a) i = ri(); std::vector > dp[r + 1]; for (auto &i : dp) { i.resize(n); for (int j = 0; j < n; j++) i[j].resize(r / (j + 1) + 1); } for (int i = 0; i < n; i++) if (i + 1 <= r) dp[i + 1][i][1] = 1; for (int i = 0; i <= r; i++) { mint sum = 0; mint minus[n]; for (int j = 0; j < n; j++) { for (int k = 0; k < (int) dp[i][j].size(); k++) { if (dp[i][j][k] == 0) continue; sum += dp[i][j][k]; minus[j] += dp[i][j][k]; if (i + j + 1 <= r && k < a[j]) dp[i + j + 1][j][k + 1] += dp[i][j][k]; } } for (int j = 0; j < n; j++) if (i + j + 1 <= r) dp[i + j + 1][j][1] += sum - minus[j]; } mint res = 0; for (int i = l; i <= r; i++) for (auto j : dp[i]) for (auto k : j) res += k; std::cout << res << std::endl; return 0; }