#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #pragma region macros #define _overload(_1, _2, _3, name, ...) name #define _rep(i, n) _range(i, 0, n) #define _range(i, a, b) for (int i = int(a); i < int(b); ++i) #define rep(...) _overload(__VA_ARGS__, _range, _rep, )(__VA_ARGS__) #define _rrep(i, n) _rrange(i, n, 0) #define _rrange(i, a, b) for (int i = int(a) - 1; i >= int(b); --i) #define rrep(...) _overload(__VA_ARGS__, _rrange, _rrep, )(__VA_ARGS__) #pragma endregion macros using namespace std; template bool chmax(T &a, const T &b) { return (a < b) ? (a = b, 1) : 0; } template bool chmin(T &a, const T &b) { return (b < a) ? (a = b, 1) : 0; } using ll = long long; using R = long double; const R EPS = 1e-9L; // [-1000,1000]->EPS=1e-8 [-10000,10000]->EPS=1e-7 inline int sgn(const R &r) { return (r > EPS) - (r < -EPS); } inline R sq(R x) { return sqrt(max(x, 0.0L)); } const pid_t pid = getpid(); // Problem Specific Parameter: class ModInt { public: static unsigned MOD; ModInt(): x(0) {} ModInt(signed y): x(y >= 0 ? y % MOD : MOD - (-y) % MOD) {} ModInt(signed long long y): x(y >= 0 ? y % MOD : MOD - (-y) % MOD) {} // Arithmetic Oprators ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = 1LL * x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= ModInt(get<1>(extgcd(that.x, int(MOD)))); } ModInt &operator%=(ModInt that) { x %= that.x; return *this; } ModInt &operator+=(const int that) { return *this += ModInt(that); } ModInt &operator-=(const int that) { return *this -= ModInt(that); } ModInt &operator*=(const int that) { return *this *= ModInt(that); } ModInt &operator/=(const int that) { return *this /= ModInt(that); } ModInt &operator%=(const int that) { return *this %= ModInt(that); } // Comparators bool operator<(ModInt that) { return x < that.x; } bool operator>(ModInt that) { return x > that.x; } bool operator<=(ModInt that) { return x <= that.x; } bool operator>=(ModInt that) { return x >= that.x; } bool operator!=(ModInt that) { return x != that.x; } bool operator==(ModInt that) { return x == that.x; } // Utilities unsigned getval() const { return x; } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt operator%(ModInt that) const { return ModInt(*this) %= that; } ModInt operator+(const int that) const { return ModInt(*this) += that; } ModInt operator-(const int that) const { return ModInt(*this) -= that; } ModInt operator*(const int that) const { return ModInt(*this) *= that; } ModInt operator/(const int that) const { return ModInt(*this) /= that; } ModInt operator%(const int that) const { return ModInt(*this) %= that; } ModInt operator=(const int that) { return *this = ModInt(that); } friend istream &operator>>(istream &is, ModInt &that) { ll tmp; is >> tmp; that = ModInt(tmp); return is; } friend ostream &operator<<(ostream &os, const ModInt &that) { return os << that.x; } ModInt power(ll n) const { ll b = 1LL, a = x; while (n) { if (n & 1) b = b * a % MOD; a = a * a % MOD; n >>= 1; } return ModInt(b); } private: unsigned x; inline tuple extgcd(int a, int b) { if (b == 0) return make_tuple(a, 1, 0); tuple ret = extgcd(b, a % b); swap(get<1>(ret), get<2>(ret)); get<2>(ret) -= a / b * get<1>(ret); return ret; } }; unsigned ModInt::MOD = 998244353; using mint = ModInt; const mint ZERO = mint(0); const mint ONE = mint(1); const mint TWO = mint(2); vector Fact, InvFact; void makeFact(int n) { Fact = vector(n + 1); Fact[0] = mint(1); rep(i, 1, n + 1) Fact[i] = mint(i) * Fact[i - 1]; InvFact = vector(n + 1); InvFact[n] = Fact[n].power(ModInt::MOD - 2); rrep(i, n) InvFact[i] = mint(i + 1) * InvFact[i + 1]; } mint Factorial(int n) { return Fact[n]; } mint InverseFactorial(int n) { return InvFact[n]; } mint Permutation(int n, int k) { return (n < 0 or k < 0 or n - k < 0) ? ZERO : Fact[n] * InvFact[n - k]; } mint Combination(int n, int k) { return (n < 0 or k < 0 or n - k < 0) ? ZERO : Fact[n] * InvFact[k] * InvFact[n - k]; } int main(void) { int n, m, l, k; cin >> n >> m >> l >> k; vector xm = {0}, ym = {0}; rep(i, m) { int xv, yv; cin >> xv >> yv; xm.push_back(xv); ym.push_back(yv); } xm.push_back(n); ym.push_back(n); vector xt(l), yt(l); rep(i, l) { cin >> xt[i] >> yt[i]; } makeFact(1000000); vector dp(l + 1, ZERO); dp[0] = ONE; rep(i, m + 1) { const int sx = xm[i], sy = ym[i]; const int tx = xm[i + 1], ty = ym[i + 1]; using pii = pair; vector ary = {pii(sx, sy), pii(tx, ty)}; rep(j, l) { if (sx <= xt[j] and xt[j] <= tx and sy <= yt[j] and yt[j] <= ty) { if (!(sx == xt[j] and sy == yt[j]) and !(tx == xt[j] and ty == yt[j])) { ary.push_back(pii(xt[j], yt[j])); } } } sort(begin(ary), end(ary)); const int all = ary.size(); mint dp2[110][110]; mint coef[110][110]; rep(a, all) rep(b, all) { dp2[a][b] = ZERO; coef[a][b] = ZERO; } dp2[0][0] = ONE; rep(a, all) rep(b, a + 1, all) { const int dx = ary[b].first - ary[a].first; const int dy = ary[b].second - ary[a].second; coef[a][b] = Combination(dx + dy, dx); } rep(a, all) rep(b, all) { // dp2[a][b] if (dp2[a][b] == ZERO) { continue; } rep(c, a + 1, all) { dp2[c][b + 1] += coef[a][c] * dp2[a][b]; } } vector cur(l + 1, ZERO); rrep(a, all - 1) { cur[a] = dp2[all - 1][a + 1]; } rrep(a, all - 1) rep(b, a + 1, all - 1) { cur[a] -= cur[b] * Combination(b, a); } vector nxt(l + 1, ZERO); rep(a, l + 1) rep(b, all - 1) { if (a + b <= l) { nxt[a + b] += dp[a] * cur[b]; } } rep(a, l + 1) { dp[a] = nxt[a]; } } rep(i, m + 1) { const int sx = xm[i], sy = ym[i]; rep(j, l) { if (sx == xt[j] and sy == yt[j]) { k--; } } } mint ans = ZERO; rep(i, l + 1) { if (i <= k) { ans += dp[i]; } } cout << ans << endl; return 0; }