#line 2 "cpplib/util/template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC target("avx2") #include using namespace std; struct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout< vec; typedef vector> mat; typedef vector>> mat3; typedef vector svec; typedef vector> smat; templateusing V=vector; templateusing VV=V>; templateinline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<inline void output2(T t){for(auto i:t)output(i);} templateinline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?" ":"")<inline void debug2(T t){for(auto i:t)output(i);} #define loop(n) for(long long _=0;_<(long long)(n);++_) #define _overload4(_1,_2,_3,_4,name,...) name #define __rep(i,a) repi(i,0,a,1) #define _rep(i,a,b) repi(i,a,b,1) #define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c) #define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__) #define _overload3_rev(_1,_2,_3,name,...) name #define _rep_rev(i,a) repi_rev(i,0,a) #define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i) #define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__) // #define rep(i,...) for(auto i:range(__VA_ARGS__)) // #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__))) // #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i) // #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i) // #define irep(i) for(lint i=0;;++i) // inline vector range(long long n){if(n<=0)return vector();vectorv(n);iota(v.begin(),v.end(),0LL);return v;} // inline vector range(long long a,long long b){if(b<=a)return vector();vectorv(b-a);iota(v.begin(),v.end(),a);return v;} // inline vector range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector();vectorv((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;} // templateinline T reversed(T v){reverse(v.begin(),v.end());return v;} #define all(n) begin(n),end(n) templatebool chmin(T& s,const E& t){bool res=s>t;s=min(s,t);return res;} templatebool chmax(T& s,const E& t){bool res=s(s,t);return res;} const vector dx={1,0,-1,0,1,1,-1,-1}; const vector dy={0,1,0,-1,1,-1,1,-1}; #define SUM(v) accumulate(all(v),0LL) templateauto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector(arg,x);else return vector(arg,make_vector(x,args...));} #define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__})) #define bit(n,a) ((n>>a)&1) vector> __MAKE_MAT__(vector v){if(v.empty())return vector>(1,vector());long long n=v.back();v.pop_back();vector> ret;vector> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i>; templateusing graph_w=vector>>; templateostream& operator<<(ostream& out,pairv){out<<"("< struct mod_int { using mint=mod_int; using u64 = std::uint_fast64_t; u64 a; constexpr mod_int(const long long x = 0)noexcept:a(x>=0?x%get_mod():get_mod()-(-x)%get_mod()){} constexpr u64 &value()noexcept{return a;} constexpr const u64 &value() const noexcept {return a;} constexpr mint operator+(const mint rhs)const noexcept{return mint(*this) += rhs;} constexpr mint operator-(const mint rhs)const noexcept{return mint(*this)-=rhs;} constexpr mint operator*(const mint rhs) const noexcept {return mint(*this) *= rhs;} constexpr mint operator/(const mint rhs) const noexcept {return mint(*this) /= rhs;} constexpr mint &operator+=(const mint rhs) noexcept { a += rhs.a; if (a >= get_mod())a -= get_mod(); return *this; } constexpr mint &operator-=(const mint rhs) noexcept { if (a= get_mod())a -= get_mod(); return *this; } constexpr mint operator--(int) noexcept { if (a<1)a += get_mod(); a -= 1; return *this; } constexpr mint &operator/=(mint rhs) noexcept { u64 exp=get_mod()-2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } constexpr bool operator==(mint x) noexcept { return a==x.a; } constexpr bool operator!=(mint x) noexcept { return a!=x.a; } constexpr bool operator<(mint x) noexcept { return a(mint x) noexcept { return a>x.a; } constexpr bool operator<=(mint x) noexcept { return a<=x.a; } constexpr bool operator>=(mint x) noexcept { return a>=x.a; } constexpr static int root(){ mint root = 2; while(root.pow((get_mod()-1)>>1).a==1)root++; return root.a; } constexpr mint pow(long long n)const{ long long x=a; mint ret = 1; while(n>0) { if(n&1)(ret*=x); (x*=x)%=get_mod(); n>>=1; } return ret; } constexpr mint inv(){ return pow(get_mod()-2); } static std::vector fac; static std::vector ifac; static bool init; constexpr static int mx=10000001; void build()const{ init=0; fac.resize(mx); ifac.resize(mx); fac[0]=1,ifac[0]=1; for(int i=1;i=0;i--)ifac[i]=ifac[i+1]*(i+1); } mint comb(long long b){ if(init)build(); if(a<0||b<0)return 0; if(a==0&&b==0)return 1; if((long long)a>(std::istream& lhs,mint& rhs) noexcept { lhs >> rhs.a; return lhs; } constexpr static u64 get_mod(){ return MOD; } }; templatestd::vector> mod_int::fac; templatestd::vector> mod_int::ifac; templatebool mod_int::init=1; #line 3 "cpplib/math/mod_int998244353.hpp" using mint=mod_int<998'244'353>; /** * @brief ModInt(998'244'353) */ #line 6 "cpplib/math/FPS_base.hpp" #include #line 8 "cpplib/math/FPS_base.hpp" /** * @brief 形式的冪級数(BASE) */ template struct FPS_BASE:std::vector{ using std::vector::vector; using P=FPS_BASE; F fft; FPS_BASE(){} inline P operator +(T x)const noexcept{return P(*this)+=x;} inline P operator -(T x)const noexcept{return P(*this)-=x;} inline P operator *(T x)const noexcept{return P(*this)*=x;} inline P operator /(T x)const noexcept{return P(*this)/=x;} inline P operator <<(int x)noexcept{return P(*this)<<=x;} inline P operator >>(int x)noexcept{return P(*this)>>=x;} inline P operator +(const P& x)const noexcept{return P(*this)+=x;} inline P operator -(const P& x)const noexcept{return P(*this)-=x;} inline P operator -()const noexcept{return P(1,T(0))-=P(*this);} inline P operator *(const P& x)const noexcept{return P(*this)*=x;} inline P operator /(const P& x)const noexcept{return P(*this)/=x;} inline P operator %(const P& x)const noexcept{return P(*this)%=x;} bool operator ==(P x){ for(int i=0;i<(int)max((*this).size(),x.size());++i){ if(i>=(int)(*this).size()&&x[i]!=T())return 0; if(i>=(int)x.size()&&(*this)[i]!=T())return 0; if(i<(int)min((*this).size(),x.size()))if((*this)[i]!=x[i])return 0; } return 1; } P &operator +=(T x){ if(this->size()==0)this->resize(1,T(0)); (*this)[0]+=x; return (*this); } P &operator -=(T x){ if(this->size()==0)this->resize(1,T(0)); (*this)[0]-=x; return (*this); } P &operator *=(T x){ for(int i=0;i<(int)this->size();++i){ (*this)[i]*=x; } return (*this); } P &operator /=(T x){ if(std::is_same::value){ for(int i=0;i<(int)this->size();++i){ (*this)[i]/=x; } return (*this); } return (*this)*=(T(1)/x); } P &operator <<=(int x){ P ret(x,T(0)); ret.insert(ret.end(),begin(*this),end(*this)); return (*this)=ret; } P &operator >>=(int x){ if((int)(*this).size()<=x)return (*this)=P(); P ret; ret.insert(ret.end(),begin(*this)+x,end(*this)); return (*this)=ret; } P &operator +=(const P& x){ if(this->size()resize(x.size(),T(0)); for(int i=0;i<(int)x.size();++i){ (*this)[i]+=x[i]; } return (*this); } P &operator -=(const P& x){ if(this->size()resize(x.size(),T(0)); for(int i=0;i<(int)x.size();++i){ (*this)[i]-=x[i]; } return (*this); } P &operator *=(const P& x){ return (*this)=F()(*this,x); } P &operator /=(P x){ if(this->size()clear(); return (*this); } const int n=this->size()-x.size()+1; return (*this) = (rev().pre(n)*x.rev().inv(n)).pre(n).rev(n); } P &operator %=(const P& x){ return ((*this)-=(*this)/x*x); } inline void print(){ for(int i=0;i<(int)(*this).size();++i)std::cerr<<(*this)[i]<<" \n"[i==(int)(*this).size()-1]; if((int)(*this).size()==0)std::cerr<<'\n'; } inline P& shrink(){while((*this).back()==0)(*this).pop_back();return (*this);} inline P pre(int sz)const{ return P(begin(*this),begin(*this)+std::min((int)this->size(),sz)); } P rev(int deg=-1){ P ret(*this); if(deg!=-1)ret.resize(deg,T(0)); reverse(begin(ret),end(ret)); return ret; } P inv(int deg=-1){ assert((*this)[0]!=T(0)); const int n=deg==-1?this->size():deg; P ret({T(1)/(*this)[0]}); for(int i=1;isize(),x.size()));++i){ ret[i]*=x[i]; } return ret; } P diff(){ if((int)(*this).size()<=1)return P(); P ret(*this); for(int i=0;i<(int)ret.size();i++){ ret[i]*=i; } return ret>>1; } P integral(){ P ret(*this); for(int i=0;i<(int)ret.size();i++){ ret[i]/=i+1; } return ret<<1; } P log(int deg=-1){ assert((*this)[0]==T(1)); const int n=deg==-1?this->size():deg; return (diff()*inv(n)).pre(n-1).integral(); } P exp(int deg=-1){ assert((*this)[0]==T(0)); const int n=deg==-1?this->size():deg; P ret({T(1)}); for(int i=1;isize():deg; long long i=0; P ret(*static_cast(this)); while(i!=(int)this->size()&&ret[i]==0)i++; if(i==(int)this->size())return P(n,0); if(i*c>=n)return P(n,0); T k=ret[i]; return ((((ret>>i)/k).log()*c).exp()*(k.pow(c))<<(i*c)).pre(n); // const int n=deg==-1?this->size():deg; // long long i=0; // P ret(*this); // while(i!=(int)this->size()&&ret[i]==0)i++; // if(i==(int)this->size())return P(n,0); // if(i*c>=n)return P(n,0); // T k=ret[i]; // return ((((ret>>i)/k).log()*c).exp()*(k.pow(c))<<(i*c)).pre(n); // P x(*this); // P ret(1,1); // while(c) { // if(c&1){ // ret*=x; // if(~deg)ret=ret.pre(deg); // } // x*=x; // if(~deg)x=x.pre(deg); // c>>=1; // } // return ret; } P sqrt(int deg=-1){ const int n=deg==-1?this->size():deg; if((*this)[0]==T(0)) { for(int i=1;i<(int)this->size();i++) { if((*this)[i]!=T(0)) { if(i&1)return{}; if(n-i/2<=0)break; auto ret=(*this>>i).sqrt(n-i/2)<<(i/2); if((int)ret.size()size(); P f(*this),g(n,0); for(int i=0;i>=n-1; for(int i=0;isize()-1;i>=0;--i){ res*=x; res+=(*this)[i]; } return res; } static P interpolation(const std::vector&x,const std::vector& y){ const int n=x.size(); std::vector>a(n*2-1); std::vector

b(n*2-1); for(int i=0;i=0;--i)a[i]={a[2*i+1].first*a[2*i+2].second+a[2*i+2].first*a[2*i+1].second,a[2*i+1].second*a[2*i+2].second}; auto d=(a[0].first).multipoint_eval(x); for(int i=0;i=0;--i)b[i]=b[2*i+1]*a[2*i+2].second+b[2*i+2]*a[2*i+1].second; return b[0]; } static P interpolation(const std::vector& y){ const int n=y.size(); std::vector>a(n*2-1); std::vector

b(n*2-1); for(int i=0;i=0;--i)a[i]={a[2*i+1].first*a[2*i+2].second+a[2*i+2].first*a[2*i+1].second,a[2*i+1].second*a[2*i+2].second}; for(int i=0;i=0;--i)b[i]=b[2*i+1]*a[2*i+2].second+b[2*i+2]*a[2*i+1].second; return b[0]; } std::vector multipoint_eval(const std::vector&x){ const int n=x.size(); P* v=new P[2*n-1]; for(int i=0;i=0;i--){v[i]=v[i*2+1]*v[i*2+2];} v[0]=P(*this)%v[0];v[0].shrink(); for(int i=1;ires(n); for(int i=0;itable(s.size()/2+1,P{1}); for(int i=1;i<(int)table.size();i++){ table[i]=((table[i-1])*t2).pre(deg); } auto f=[&](auto f,auto l,auto r,int deg)->P{ if(r-l==1)return P{*l}; auto m=l+(r-l)/2; return f(f,l,m,deg)+(table[m-l]*f(f,m,r,deg)).pre(deg); }; P ans=P(); P tmp=f(f,s.begin(),s.end(),deg); P tmp2=P{1}; T tmp3=T(1); int tmp5=-1; P tmp6=t2.diff(); if(tmp6==P()){ for(int i=0;i>(tmp5-1)).inv(deg); for(int i=0;i>(tmp5-1))*tmp4).pre(deg); tmp2=(tmp2*(t-t2)).pre(deg); tmp3*=T(i+1); } } return ans; } //(*this)(t(x)) P manipulate2(P t,int deg){ P ans=P(); P s=(*this).rev(); for(int i=0;i<(int)s.size();++i){ ans=(ans*t+s[i]).pre(deg); } return ans; } P find_linear_recurrence()const{ const int n=this->size(); P b={T(-1)},c={T(-1)}; T y=T(1); for(int i=1;i<=n;++i){ int l=c.size(),m=b.size(); T x=0; for(int j=0;j #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder #include #include #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { template * = nullptr> void butterfly(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template * = nullptr> void butterfly_inv(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } // namespace internal template * = nullptr> std::vector convolution(std::vector a, std::vector b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template ::value>* = nullptr> std::vector convolution(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint; std::vector a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector convolution_ll(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution(a, b); auto c2 = convolution(a, b); auto c3 = convolution(a, b); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 1 "cpplib/math/ceil_pow2.hpp" int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } #line 1 "cpplib/math/mod_pow.hpp" /** * @brief (x^y)%mod */ long long mod_pow(long long x,long long y,long long mod){ long long ret=1; while(y>0) { if(y&1)(ret*=x)%=mod; (x*=x)%=mod; y>>=1; } return ret; } #line 4 "cpplib/math/garner.hpp" /** * * @brief ガーナーのアルゴリズム * */ long long garner(std::vectora,std::vectormods){ const int sz=3; long long coeffs[sz+1]={1,1,1,1}; long long constants[sz+1]={}; for(int i=0;i struct _FPS{ template T operator()(const T& _s,const T& _t){ if(_s.size()==0||_t.size()==0)return T(); const size_t sz=_s.size()+_t.size()-1; if((Mint::get_mod()&((1<>s(_s.size()),t(_t.size()); for(size_t i=0;i<_s.size();++i)s[i]=_s[i].value(); for(size_t i=0;i<_t.size();++i)t[i]=_t[i].value(); std::vector> _v=atcoder::convolution(s,t); T v(_v.size()); for (size_t i=0;i<_v.size();++i)v[i]=_v[i].val(); return v; }else{ std::vector>s1(_s.size()),t1(_t.size()); std::vector>s2(_s.size()),t2(_t.size()); std::vector>s3(_s.size()),t3(_t.size()); for(size_t i=0;i<_s.size();++i){ s1[i]=_s[i].value(); s2[i]=_s[i].value(); s3[i]=_s[i].value(); } for(size_t i=0;i<_t.size();++i){ t1[i]=_t[i].value(); t2[i]=_t[i].value(); t3[i]=_t[i].value(); } auto v1=atcoder::convolution(s1,t1); auto v2=atcoder::convolution(s2,t2); auto v3=atcoder::convolution(s3,t3); T v(sz); for(size_t i=0;i{v1[i].val(),v2[i].val(),v3[i].val()},std::vector{1224736769,1045430273,1007681537,Mint::get_mod()}); } return v; } } template T fact(const T& s){ return s.fact(); } template T pow(const T& s,long long i){ return s.pow(i); } }; templateusing fps=FPS_BASE>; #line 4 "code.cpp" int main(){ lint n; cin>>n; fpsb(n*2+2); rep(i,1,2*n+2){ b[i]=mint(i).fact_inv(); } b=(b>>1).inv(); rep(i,2*n+1)b[i]*=mint(i).fact(); vectorans(n*2+1); mint tmp=mint(1)/2; rep(i,1,n+1){ ans[i*2]=b[i*2]*mint(2).pow(2*i)*tmp*mint(2*i).fact_inv()*(i%2?1:-1)*mint(2).pow(i-1); } output(ans); }