class Digraph: """重み[なし]有向グラフを生成する. """ #入力定義 def __init__(self,vertex=[]): self.vertex=set(vertex) self.edge_number=0 self.vertex_number=len(vertex) self.adjacent_out={v:set() for v in vertex} #出近傍(vが始点) self.adjacent_in={v:set() for v in vertex} #入近傍(vが終点) #頂点の追加 def add_vertex(self,*adder): for v in adder: if v not in self.vertex: self.adjacent_in[v]=set() self.adjacent_out[v]=set() self.vertex_number+=1 self.vertex.add(v) #辺の追加 def add_edge(self,From,To): for v in [From,To]: if v not in self.vertex: self.add_vertex(v) if To not in self.adjacent_in[From]: self.edge_number+=1 self.adjacent_out[From].add(To) self.adjacent_in[To].add(From) #辺を除く def remove_edge(self,From,To): for v in [From,To]: if v not in self.vertex: self.add_vertex(v) if To in self.adjacent_out[From]: self.adjacent_out[From].remove(To) self.adjacent_in[To].remove(From) self.edge_number-=1 #頂点を除く def remove_vertex(self,*vertexes): for v in vertexes: if v in self.vertex: self.vertex_number-=1 for u in self.adjacent_out[v]: self.adjacent_in[u].remove(v) self.edge_number-=1 del self.adjacent_out[v] for u in self.adjacent_in[v]: self.adjacent_out[u].remove(v) self.edge_number-=1 del self.adjacent_in[v] #Walkの追加 def add_walk(self,*walk): N=len(walk) for k in range(N-1): self.add_edge(walk[k],walk[k+1]) #Cycleの追加 def add_cycle(self,*cycle): self.add_walk(*cycle) self.add_edge(cycle[-1],cycle[0]) #頂点の交換 def __vertex_swap(self,p,q): self.vertex.sort() #グラフに頂点が存在するか否か def vertex_exist(self,v): return v in self.vertex #グラフに辺が存在するか否か def edge_exist(self,From,To): if not(self.vertex_exist(From) and self.vertex_exist(To)): return False return To in self.adjacent_out[From] #近傍 def neighbohood(self,v): if not self.vertex_exist(v): return [] return list(self.adjacent[v]) #出次数 def out_degree(self,v): if not self.vertex_exist(v): return 0 return len(self.adjacent_out[v]) #入次数 def in_degree(self,v): if not self.vertex_exist(v): return 0 return len(self.adjacent_in[v]) #次数 def degree(self,v): if not self.vertex_exist(v): return 0 return self.out_degree(v)-self.in_degree(v) #頂点数 def vertex_count(self): return len(self.vertex) #辺数 def edge_count(self): return self.edge_number #頂点vを含む連結成分 def connected_component(self,v): pass #強連結成分に分解 def Strongly_Connected_Component_Decomposition(D,Mode=0): """有向グラフDを強連結成分に分解 Mode: 0(Defalt)---各強連結成分の頂点のリスト 1 ---各頂点が属している強連結成分の番号 2 ---0,1の両方 ※0で帰ってくるリストは各強連結成分に関してトポロジカルソートである. """ Group={v:0 for v in D.adjacent_out} Order=[] for v in D.adjacent_out: if Group[v]:continue S=[v] Group[v]=-1 while S: u=S.pop() for w in D.adjacent_out[u]: if Group[w]:continue Group[w]=-1 S.append(u) S.append(w) break else: Order.append(u) k=0 for v in Order[::-1]: if Group[v]!=-1: continue S=[v] Group[v]=k while S: u=S.pop() for w in D.adjacent_in[u]: if Group[w]!=-1: continue Group[w]=k S.append(w) k+=1 if Mode==0 or Mode==2: T=[[] for _ in range(k)] for v in D.adjacent_out: T[Group[v]].append(v) if Mode==0: return T elif Mode==1: return Group else: return (Group,T) #================================================ def f(p,z): a,w=p x,y=z return [(x*a)%Mod,a*y+x*w] #================================================ from collections import defaultdict N,M=map(int,input().split()) Mod=998244353 D=Digraph(range(N+1)) E=[defaultdict(lambda :[0,0]) for _ in range(N+1)] for _ in range(M): u,v,w,a=map(int,input().split()) D.add_edge(u,v) b,l=E[u][v] E[u][v]=[b+a,(l+a*w)%Mod] G,T=Strongly_Connected_Component_Decomposition(D,2) inf=float("inf") Flag=[0]*(N+1) Flag[0]=1 DP=[[0,0] for _ in range(N+1)] DP[0]=[1,0] for U in T: if len(U)>=2: F=0 for v in U: F|=Flag[v] if F: for v in U: DP[v]=[inf,inf] for u in U: x,y=DP[u] for v in E[u]: Flag[v]|=Flag[u] if x==inf: DP[v]=[inf,inf] else: a,w=E[u][v] DP[v][0]+=x*a DP[v][1]+=y*a+x*w DP[v][0]%=Mod DP[v][1]%=Mod print(DP[N][1] if DP[N][1]