#include #include #include #include #include #include #include #include #include #include #include #define rep(i,n) for(int i = 0; i < n; ++i) #define rep1(i,n) for(int i = 1; i <= n; ++i) using namespace std; templatebool chmax(T &a, const T &b) { if(a < b){ a = b; return 1; } return 0; } templatebool chmin(T &a, const T &b) { if(a > b){ a = b; return 1; } return 0; } template inline int sz(T &a) { return a.size(); } using ll = long long; using ld = long double; using pi = pair; using pl = pair; using vi = vector; using vvi = vector; using vl = vector; using vvl = vector; const int inf = numeric_limits::max(); const ll infll = numeric_limits::max(); // ユークリッドの互除法で最大公約数を求める ll gcd(ll a,ll b){ if(b==0) return a; return gcd(b,a%b); } // 最小公倍数 ll lcm(ll a,ll b){ return a/gcd(a,b)*b; } // 拡張ユークリッドの互除法 // ap + bq = gcd(a, b) となる (p, q) を求める. // 返り値はgcd(a, b) ll ExtGcd(ll a, ll b, ll &p, ll &q) { if (b == 0) { p = 1; q = 0; return a; } ll d = ExtGcd(b, a%b, q, p); q -= a/b * p; return d; } // 中国剰余定理 // x = b1 (mod m1), x = b2 (mod m2), m1とm2は互いに素, を満たすようなxを求める. // 返り値を (r, m) とすると解は x = r (mod m) // 解なしの場合は (0, -1) を返すよ pair CRT(ll b1, ll m1, ll b2, ll m2) { ll p, q; ll d = ExtGcd(m1, m2, p, q); // p is inv of m1/d (mod. m2/d) if ((b2 - b1) % d != 0) return {0, -1}; ll m = m1 * (m2/d); // lcm of (m1, m2) ll tmp = (b2 - b1) / d * p % (m2/d); ll r = ((b1 + m1 * tmp) % m + m) % m; return {r, m}; } int main() { ll MOD = 1e+9+7; int t; cin >> t; while(t-- > 0) { vl a(3); rep(i,3) cin >> a[i]; ll n; cin >> n; sort(a.begin(),a.end()); ll x = a[0], y = a[1], z = a[2]; ll res = 0; while(n > 0) { pl p = CRT(n%y, y, 0, x); if(p.second != -1) { ll r = p.first; ll g = lcm(x,y); if(n-r >= 0) { ll a = r/x, b = (n-r)/y; ll aa = g/x, bb = g/y; res = (res + 1 + a/aa + b/bb) % MOD; } } n -= z; } cout << res << "\n"; } return 0; }