#include #include using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair plint; typedef pair pld; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' #define fi first #define se second struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template auto add = [](T a, T b) -> T { return a + b; }; template auto f_max = [](T a, T b) -> T { return max(a, b); }; template auto f_min = [](T a, T b) -> T { return min(a, b); }; template using V = vector; using Vl = V; using VVl = V; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint ceil(lint a, lint b) { return (a + b - 1) / b; } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); } lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); } void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD = 1e9 + 7, INF = 1e9 + 1; lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c = 1) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V>; typedef pair tlint; typedef pair qlint; typedef pair valstring; template class modint { using u64 = std::int_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {} constexpr u64& value() noexcept { return a; } constexpr const u64& value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint& operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint& operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint& operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint& operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } }; typedef modint ModInt; ModInt mod_pow(ModInt x, lint n) { ModInt ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } ModInt func[200000]; void funcinit(int N) { func[0] = 1; for (int i = 1; i <= N; i++) { func[i] = func[i - 1] * i; } } ModInt comb(ModInt n, ModInt r) { if (n.a <= 0 || n.a < r.a) { return 1; } return func[n.a] / (func[r.a] * func[(n - r).a]); } struct Topological_Sort { public: Topological_Sort(int _n) : G(_n, Vl()), indegree(_n, 0), N(_n) {} void add_edge(int u, int v) { G[u].push_back(v); indegree[v]++; } Vl get() { Vl sorted_vertices; Vl tmp_indegree = indegree; queue que; REP(i, N) { if (tmp_indegree[i] == 0) que.push(i); } while (!que.empty()) { int v = que.front(); que.pop(); REP(i, SZ(G[v])) { int u = G[v][i]; tmp_indegree[u]--; if (tmp_indegree[u] == 0) que.push(u); } sorted_vertices.push_back(v); } return sorted_vertices; } private: VVl G; Vl indegree; int N; }; lint N, M, u, v, l, a; int main() { cin >> N >> M; VVl to(N + 1, Vl()); V> rev(N + 1, V()); Topological_Sort topo(N + 1); REP(i, M) { cin >> u >> v >> l >> a; topo.add_edge(u, v); rev[v].push_back({ u, {l, a} }); } auto vec = topo.get(); if (SZ(vec) != N + 1) { cout << "INF" << endk; } else { reverse(ALL(vec)); V dp(N + 1); for (lint v : vec) { for (auto nxt : rev[v]) { dp[nxt.first] += (dp[v] + nxt.second.first) * nxt.second.second; } } cout << dp[vec.back()].a << endk; } }