#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair LP; int dx[4]={1,-1,0,0}; int dy[4]={0,0,1,-1}; templatebool chmax(T &a, const T &b) {if(abool chmin(T &a, const T &b) {if(b struct ModInt { long long x; static constexpr int MOD = mod; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const {return x;} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator%(const ModInt &p) const { return ModInt(0); } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } ModInt power(const ModInt p) const{ return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using modint = ModInt; int n,m; struct edge{ int to,l,a; edge(){} edge(int to,int l,int a):to(to),l(l),a(a){} }; bool visited[100010],finish[100010],roop=false; modint dp1[100010],dp2[100010]; vector> G,rG; vector R1,R2; void dfs1(int s,vector> &G,vector &R){ R[s]=true; for(edge e:G[s]){ if(R[e.to]) continue; dfs1(e.to,G,R); } } // vector topological_sort(int n,vector> &G){ // vector deg(n,0); // rep(i,n){ // for(int t:G[i]){ // } // } // } void calc(int s){ visited[s]=true; for(edge e:rG[s]){ if(!R1[e.to] || !R2[e.to]) continue; if(visited[e.to] && !finish[e.to]){ roop=true; continue; } if(!visited[e.to]) calc(e.to); dp1[s]+=dp1[e.to]*e.a+dp2[e.to]*e.a*e.l; dp2[s]+=dp2[e.to]*e.a; } finish[s]=true; } void solve(){ cin >> n >> m; G.resize(n+1,vector());rG.resize(n+1,vector()); rep(i,m){ int u,v,l,a;cin >> u >> v >> l >> a; G[u].push_back({v,l,a}); rG[v].push_back({u,l,a}); } R1.resize(n+1,false);R2.resize(n+1,false); dfs1(0,G,R1);dfs1(n,rG,R2); if(!R1[n]){ cout << 0 << endl; return; } dp2[0]=1; calc(n); // rep(i,n+1){ // cout << i << " " << dp1[i] << " " << dp2[i] << endl; // } if(roop) { cout << "INF" << endl; return; } cout << dp1[n] << endl; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }