#include #define rep(i,n) for(int i=0;i<(int)(n);i++) #define chmin(x,y) x = min((x),(y)); #define chmax(x,y) x = max((x),(y)); using namespace std; using ll = long long ; using P = pair ; using pll = pair; const int INF = 1e9; const long long LINF = 1e17; const int MOD = 1000000007; //const int MOD = 998244353; const double PI = 3.14159265358979323846; #include #include #include #include namespace atcoder { namespace internal { template struct csr { std::vector start; std::vector elist; csr(int n, const std::vector>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; // Reference: // R. Tarjan, // Depth-First Search and Linear Graph Algorithms struct scc_graph { public: scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } // @return pair of (# of scc, scc id) std::pair> scc_ids() { auto g = csr(_n, edges); int now_ord = 0, group_num = 0; std::vector visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto& x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector counts(group_num); for (auto x : ids.second) counts[x]++; std::vector> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector> edges; }; } // namespace internal } // namespace atcoder #include #include namespace atcoder { struct scc_graph { public: scc_graph() : internal(0) {} scc_graph(int n) : internal(n) {} void add_edge(int from, int to) { int n = internal.num_vertices(); assert(0 <= from && from < n); assert(0 <= to && to < n); internal.add_edge(from, to); } std::vector> scc() { return internal.scc(); } private: internal::scc_graph internal; }; } // namespace atcoder using namespace atcoder; template struct ModInt{ long long x=0; constexpr ModInt(long long x=0):x((x%mod+mod)%mod){} constexpr ModInt operator+(const ModInt& r)const{return ModInt(*this)+=r;} constexpr ModInt operator-(const ModInt& r)const{return ModInt(*this)-=r;} constexpr ModInt operator*(const ModInt& r)const{return ModInt(*this)*=r;} constexpr ModInt operator/(const ModInt& r)const{return ModInt(*this)/=r;} constexpr ModInt& operator+=(const ModInt& r){ if((x+=r.x)>=mod) x-=mod; return *this;} constexpr ModInt& operator-=(const ModInt& r){ if((x-=r.x)<0) x+=mod; return *this;} constexpr ModInt& operator*=(const ModInt& r){ if((x*=r.x)>=mod) x%=mod; return *this;} constexpr ModInt& operator/=(const ModInt& r){ return *this*=r.inv();} ModInt inv() const { long long s=x,sx=1,sy=0,t=mod,tx=0,ty=1; while(s%t!=0){ long long temp=s/t,u=s-t*temp,ux=sx-temp*tx,uy=sy-temp*ty; s=t;sx=tx;sy=ty; t=u;tx=ux;ty=uy; } return ModInt(tx); } ModInt pow(long long n) const { ModInt a=1; ModInt b=*this; while(n>0){ if(n&1) a*=b; b*=b; n>>=1; } return a; } friend constexpr ostream& operator<<(ostream& os,const ModInt& a) {return os << a.x;} friend constexpr istream& operator>>(istream& is,ModInt& a) {return is >> a.x;} }; using mint = ModInt; struct edge{ ll to,l,a; }; mint dp[100005]; mint cnt[100005]; int main(){ int n,m; cin >> n >> m; vector> G(n+1); scc_graph graph(n+1); rep(i,m){ ll u,v,l,a; cin >> u >> v >> l >> a; G[u].push_back(edge{v,l,a}); graph.add_edge(u,v); } vector> topo = graph.scc(); map real_temp; rep(i,topo.size()){ for(int j:topo[i]){ real_temp[j] = i; } } vector seen(topo.size(),0); vector dfs_res(topo.size(),false); int n_temp = real_temp[n]; bool cycle = false; auto dfs = [&](auto&& dfs,int i) -> bool{ if(seen[i] == 1) return dfs_res[i]; seen[i] = 1; bool ok = false; if(i == n_temp) ok = true; for(int j:topo[i]){ for(auto e:G[j]){ int to = real_temp[e.to]; if(seen[to] == 1) continue; bool temp = dfs(dfs,to); if(temp) ok = true; } } if(ok && (int)topo[i].size() > 1){ cycle = true; } return dfs_res[i] = ok; }; dfs(dfs,0); if(seen[n_temp] == 0){ cout << 0 << endl; return 0; } if(cycle){ cout << "INF" << endl; return 0; } dp[0] = 0; cnt[0] = 1; rep(ii,topo.size()){ int i = topo[ii][0]; for(auto e:G[i]){ dp[e.to] += dp[i] * e.a + cnt[i] * e.a * e.l; cnt[e.to] += cnt[i] * e.a; } } cout << dp[n] << endl; return 0; }