#!/usr/bin/python # -*- coding: utf-8 -*- # † from math import sin, cos eps = 1e-9 equal = lambda a, b: abs(a-b) < eps greater_than = lambda a, b: a + eps > b less_than = lambda a, b: a < b + eps class Complex(object): def __init__(self, x, y): self.x, self.y = x, y def __add__(self, other): return Complex(self.x + other.x, self.y + other.y) def __sub__(self, other): return Complex(self.x - other.x, self.y - other.y) def __mul__(self, other): if type(other) is Complex: return Complex(self.x * other.x - self.y * other.y, self.x * other.y + other.x * self.y) else: return Complex(self.x * other, self.y * other) def __rmul__(self, other): return self * other def __div__(self, other): if type(other) is Complex: rr= other.x**2 + other.y**2 p = (other.x * self.x + other.y * self.y) / float(rr) q = (other.x * self.y - other.y * self.x) / float(rr) return Complex(p, q) else: return Complex(self.x / float(other), self.y / float(other)) def __eq__(self, other): return equal(self.x, other.x) and equal(self.y, other.y) def __ne__(self, other): return not (self == other) def __lt__(self, other): return self.x < other.x if self.x != other.x else self.y < other.y def __gt__(self, other): return self.x > other.x if self.x != other.x else self.y > other.y def norm(self): return self.x**2 + self.y**2 def __abs__(self): return self.norm() ** .5 def conjugate(self): return Complex(self.x, -self.y) @staticmethod def polar(rho, theta): return Complex(rho * cos(theta), rho * sin(theta)) def __repr__(self): if equal(self.y, 0): return '{:.06f}'.format(self.x) if equal(self.x, 0): return '{:.06f}i'.format(self.y) op = '+' if self.y >= 0 else '-' return '{:.06f} {} {:.06f}i'.format(self.x, op, abs(self.y)) Point1 = lambda xy: Complex(*xy) Point = Complex def cross(p0, p1): return (p0.conjugate() * p1).y # (ΦωΦ)<2直線の交点 def crosspoint_ll(a0, a1, b0, b1): d0 = cross(b1-b0, b0-a0) d1 = cross(b1-b0, a1-a0) if equal(d0, 0) and equal(d1, 0): return a0 # 同じ直線 if equal(d1, 0): raise '(;ω;)<交点がないです' return a0 + float(d0)/d1 * (a1-a0) pa = Point1(map(int, raw_input().split())) pb = Point1(map(int, raw_input().split())) pb.x *= -1 sa = Point(0, 0) sb = Point(0, 1) res = crosspoint_ll(pa, pb, sa, sb) print '{:.12f}'.format(res.y)