from heapq import heappop, heappush class Heap(): def __init__(self): self.heap = [] def pop(self): res = heappop(self.heap) return res def push(self, x): heappush(self.heap, x) def top(self): return self.heap[0] def size(self): return len(self.heap) def is_empty(self): return self.size() == 0 class DisjointSetUnion(): def __init__(self, n): self.n = n self.par_size = [-1] * n def merge(self, a, b): x = self.leader(a) y = self.leader(b) if x == y: return x if -self.par_size[x] < -self.par_size[y]: x, y = y, x self.par_size[x] += self.par_size[y] self.par_size[y] = x return x def same(self, a, b): return self.leader(a) == self.leader(b) def leader(self, a): x = a while self.par_size[x] >= 0: x = self.par_size[x] while self.par_size[a] >= 0: self.par_size[a] = x a = self.par_size[a] return x def size(self, a): return -self.par_size[self.leader(a)] INF = 10**18 class Graph(): def __init__(self, n): self.n = n self.graph = [[] for _ in range(n)] self.edge = dict() def add_edge(self, u, v, c): if v < u: u, v = v, u self.graph[u].append(v) self.graph[v].append(u) self.edge[u * self.n + v] = c def minimum_steiner_tree(self, terminal): t = len(terminal) if t <= 1: return 0 dp = [[INF] * self.n for _ in range(1 << t)] for i, v in enumerate(terminal): dp[1 << i][v] = 0 for bit in range(1, 1 << t): for v in range(self.n): subset = bit while subset: dp[bit][v] = min(dp[bit][v], dp[subset][v] + dp[bit ^ subset][v]) subset = (subset - 1) & bit if bit == (1 << t) - 1: break heap = Heap() for v in range(self.n): heap.push((dp[bit][v], v)) while not heap.is_empty(): d, v = heap.pop() if dp[bit][v] < d: continue for adj in self.graph[v]: if v < adj: c = self.edge[v * self.n + adj] else: c = self.edge[adj * self.n + v] if dp[bit][adj] > dp[bit][v] + c: dp[bit][adj] = dp[bit][v] + c heap.push((dp[bit][adj], adj)) return dp[-1][terminal[0]] def kruskal(self): res = 0 dsu = DisjointSetUnion(self.n) edges = [] for v, g in enumerate(self.graph): for u in g: if u < v: edges.append(u * self.n + v) edges.sort(key=lambda x: self.edge[x]) for e in edges: u, v = divmod(e, self.n) if dsu.same(u, v): continue res += self.edge[e] dsu.merge(u, v) return res import sys input = sys.stdin.buffer.readline N, M, T = map(int, input().split()) if T < 16: g = Graph(N) for _ in range(M): a, b, c = map(int, input().split()) g.add_edge(a - 1, b - 1, c) V = [int(input()) - 1 for _ in range(T)] print(g.minimum_steiner_tree(V)) else: edge = [tuple(map(int, input().split())) for _ in range(M)] V = dict() for i in range(T): v = int(input()) V[v - 1] = i W = [] for i in range(N): if not i in V: W.append(i) res = 10**18 for bit in range(1 << (N - T)): p = 0 w = dict() for i in range(N): if (bit >> i) & 1: w[W[i]] = p p += 1 g = Graph(T + p) for a, b, c in edge: if a - 1 in V: if b - 1 in V: g.add_edge(V[a - 1], V[b - 1], c) elif b - 1 in w: g.add_edge(V[a - 1], w[b - 1] + T, c) elif a - 1 in w: if b - 1 in V: g.add_edge(w[a - 1] + T, V[b - 1], c) elif b - 1 in w: g.add_edge(w[a - 1] + T, w[b - 1] + T, c) mst = g.kruskal() res = min(res, mst) print(res)