#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; constexpr int INF = 1001001001; constexpr int mod = 1000000007; // constexpr int mod = 998244353; template inline bool chmax(T& x, T y){ if(x < y){ x = y; return true; } return false; } template inline bool chmin(T& x, T y){ if(x > y){ x = y; return true; } return false; } struct mint { int x; mint() : x(0) {} mint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} mint& operator+=(const mint& p){ if((x += p.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint& p){ if((x -= p.x) < 0) x += mod; return *this; } mint& operator*=(const mint& p){ x = (int)(1LL * x * p.x % mod); return *this; } mint& operator/=(const mint& p){ *this *= p.inverse(); return *this; } mint operator-() const { return mint(-x); } mint operator+(const mint& p) const { return mint(*this) += p; } mint operator-(const mint& p) const { return mint(*this) -= p; } mint operator*(const mint& p) const { return mint(*this) *= p; } mint operator/(const mint& p) const { return mint(*this) /= p; } bool operator==(const mint& p) const { return x == p.x; } bool operator!=(const mint& p) const { return x != p.x; } mint pow(int64_t n) const { mint res = 1, mul = x; while(n > 0){ if(n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } mint inverse() const { return pow(mod - 2); } friend ostream& operator<<(ostream& os, const mint& p){ return os << p.x; } friend istream& operator>>(istream& is, mint& p){ int64_t val; is >> val; p = mint(val); return is; } }; using Vec = vector; using Mat = vector; Mat Mul(const Mat& A, const Mat& B){ Mat C(A.size(), Vec(B[0].size())); for(int i = 0; i < (int)A.size(); ++i){ for(int k = 0; k < (int)A[0].size(); ++k){ for(int j = 0; j < (int)B[0].size(); ++j){ C[i][j] += A[i][k] * B[k][j]; } } } return C; } Mat Pow(Mat A, ll n){ Mat B(A.size(), Vec(A.size())); for(int i = 0; i < (int)A.size(); ++i) B[i][i] = 1; while(n > 0){ if(n & 1) B = Mul(B, A); A = Mul(A, A); n >>= 1; } return B; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int K, M; ll N; cin >> K >> M >> N; vector> T(M, vector(3)); vector A(K * K); Mat W(K * K, Vec(K * K)); for(int i = 0; i < M; ++i){ for(int j = 0; j < 3; ++j){ cin >> T[i][j]; --T[i][j]; } if(T[i][0] == 0) A[T[i][1]] = 1; W[T[i][1] * K + T[i][2]][T[i][0] * K + T[i][1]] = 1; } W = Pow(W, N - 2); mint ans = 0; for(int i = 0; i < K * K; i += K){ for(int j = 0; j < K * K; ++j){ ans += W[i][j] * A[j]; } } cout << ans << endl; return 0; }