/** * code generated by JHelper * More info: https://github.com/AlexeyDmitriev/JHelper * @author */ #include using namespace std; using ll = long long; using ld = long double; template using P = pair; template using V = vector; using VI = vector; using VL = vector; //#pragma GCC optimize("O3") //#pragma GCC target("avx2") //#pragma GCC target("avx512f") //#pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //#pragma GCC optimize("Ofast") #define G(size_1) vector>(size_1, vector()) #define SZ(x) ((long long)(x).size()) #define READ ({long long t;cin >> t;t;}) #define FOR(i, __begin, __end) for (auto i = (__begin) - ((__begin) > (__end)); i != (__end) - ((__begin) > (__end)); i += 1 - 2 * ((__begin) > (__end))) #define REP(i, __end) for (auto i = decltype(__end){0}; i < (__end); ++i) #define ALL(x) (x).begin(),(x).end() #define RALL(x) (x).rbegin(),(x).rend() #define F first #define S second #define y0 y3487465 #define y1 y8687969 #define j0 j1347829 #define j1 j234892 #define BIT(n) (1LL<<(n)) #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ) #define EB emplace_back #define PB push_back #define fcout cout << fixed << setprecision(12) #define fcerr cerr << fixed << setprecision(12) #define print(x) cout << (x) << '\n' #define printE(x) cout << (x) << endl; #define fprint(x) cout << fixed << setprecision(12) << (x) << '\n' # define BYE(a) do { cout << (a) << endl; return ; } while (false) #define LB lower_bound #define UB upper_bound #define LBI(c, x) distance((c).begin(), lower_bound((c).begin(), (c).end(), (x))) #define UBI(c, x) distance((c).begin(), upper_bound((c).begin(), (c).end(), (x))) #ifdef DEBUG #define DBG(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator _it(_ss); _err(cerr,_it, args); } #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator _it(_ss); _err(std::cerr,_it, args); } #else #define DBG(args...) {}; #define ERR(args...) {}; #endif void _err(std::ostream& cerr, istream_iterator it){cerr << endl;} template void _err(std::ostream& cerr, istream_iterator it, T a, Args... args){ cerr << *it << " = " << a << " "; _err(cerr, ++it, args...); } namespace aux{ template struct seq{ }; template struct gen_seq : gen_seq{ }; template struct gen_seq<0, Is...> : seq{ }; template void print_tuple(std::basic_ostream& os, Tuple const& t, seq){ using swallow = int[]; (void) swallow{0, (void(os << (Is == 0 ? "" : ",") << std::get(t)), 0)...}; } template void read_tuple(std::basic_istream& os, Tuple& t, seq){ using swallow = int[]; (void) swallow{0, (void(os >> std::get(t)), 0)...}; } } // aux:: template auto operator<<(std::basic_ostream& os, std::tuple const& t) -> std::basic_ostream&{ os << "("; aux::print_tuple(os, t, aux::gen_seq()); return os << ")"; } template auto operator>>(std::basic_istream& os, std::tuple& t) -> std::basic_istream&{ aux::read_tuple(os, t, aux::gen_seq()); return os; } template inline bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; } template inline bool chmin(T& a, const T& b){ if(b < a){ a = b; return 1; } return 0; } template istream& operator>>(istream& is, pair& V){ is >> V.F >> V.S; return is; } template istream& operator>>(istream& is, vector& V){ for(auto&& ele : V)is >> ele; return is; } template ostream& operator<<(ostream& os, const vector V){ os << "["; int cnt = 0; T curr; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ if(V[i] == curr)cnt++; else cnt = 0; if(cnt == 4)os << "... "; if(cnt < 4) os << i << ":" << V[i] << " "; curr = V[i]; } os << V.size() - 1 << ":" << V.back(); } os << "]\n"; return os; } template ostream& operator<<(ostream& os, const pair P){ os << "("; os << P.first << "," << P.second; os << ")"; return os; } template ostream& operator<<(ostream& os, const set V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template ostream& operator<<(ostream& os, const unordered_set V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template ostream& operator<<(ostream& os, const multiset V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}"; return os; } template ostream& operator<<(ostream& os, const map V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template ostream& operator<<(ostream& os, const unordered_map V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template ostream& operator<<(ostream& os, const deque V){ os << "["; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ os << V[i] << "->"; } if(!V.empty())os << V.back(); } os << "]\n"; return os; }; template ostream& operator<<(ostream& os, const priority_queue V){ priority_queue _V = V; os << "["; if(!_V.empty()){ while(_V.size() > 1){ os << _V.top() << "->"; _V.pop(); } os << _V.top(); } os << "]\n"; return os; }; template struct y_combinator{ F f; // the lambda will be stored here // a forwarding operator(): template decltype(auto) operator()(Args&& ... args) const{ // we pass ourselves to f, then the arguments. // the lambda should take the first argument as `auto&& recurse` or similar. return f(*this, std::forward(args)...); } }; // helper function that deduces the type of the lambda: template y_combinator> recursive(F&& f){ return {std::forward(f)}; } struct hash_pair{ template size_t operator()(const pair& p) const{ auto hash1 = hash{}(p.first); auto hash2 = hash{}(p.second); return hash1^hash2; } }; template auto vec(int n, U v){ return std::vector(n, v); } template auto vec(int n, Args... args){ auto val = vec(std::forward(args)...); return std::vector(n, std::move(val)); } const double PI = 2*acos(.0); const int INF = 0x3f3f3f3f; template inline T ceil(T a, T b){return (a + b - 1)/b;} inline long long popcount(ll x){return __builtin_popcountll(x);} #ifndef ATCODER_DSU_HPP #define ATCODER_DSU_HPP 1 #include #include #include namespace atcoder { // Implement (union by size) + (path compression) // Reference: // Zvi Galil and Giuseppe F. Italiano, // Data structures and algorithms for disjoint set union problems struct dsu { public: dsu() : _n(0) {} dsu(int n) : _n(n), parent_or_size(n, -1) {} int merge(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y); parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; return x; } bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; return parent_or_size[a] = leader(parent_or_size[a]); } int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } std::vector> groups() { std::vector leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase( std::remove_if(result.begin(), result.end(), [&](const std::vector& v) { return v.empty(); }), result.end()); return result; } private: int _n; // root node: -1 * component size // otherwise: parent std::vector parent_or_size; }; } // namespace atcoder #endif // ATCODER_DSU_HPP using namespace atcoder; void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr){ int N, M; cin >> N >> M; auto g = G(N); REP(i,N){ int b,c;cin >> b >> c;b--, c--; g[c].EB(b); } dsu uf(M); for(auto v : g){ REP(i,SZ(v))uf.merge(v[i], v[0]); } print(M-SZ(uf.groups())); } #undef int int main() { istream& in(cin); ostream& out(cout); ostringstream err; in.tie(0); ios::sync_with_stdio(0); solve(in, out, err); return 0; }