#include #include using namespace std; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define all(v) v.begin(), v.end() #define ll int64_t #define _GLIBCXX_DEBUG const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; //拡張ユークリッドの互除法 template< typename T > T extgcd(T a, T b, T &x, T &y) { T d = a; if(b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else { x = 1; y = 0; } return d; } //べき乗 ll pow(ll x,ll n,ll mod){ ll res=1; while(n>0){ if(n&1) res=res*x%mod; x=x*x%mod; n>>=1; } return res; } //約数列挙(√N) vector< int64_t > divisor(int64_t n) { vector< int64_t > ret; for(int64_t i = 1; i * i <= n; i++) { if(n % i == 0) { ret.push_back(i); if(i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return (ret); } //素因数分解(√N) map< int64_t, int > prime_factor(int64_t n) { map< int64_t, int > ret; for(int64_t i = 2; i * i <= n; i++) { while(n % i == 0) { ret[i]++; n /= i; } } if(n != 1) ret[n] = 1; return ret; } //素数テーブル(NloglogN) vector< bool > prime_table(int n) { vector< bool > prime(n + 1, true); if(n >= 0) prime[0] = false; if(n >= 1) prime[1] = false; for(int i = 2; i * i <= n; i++) { if(!prime[i]) continue; for(int j = i + i; j <= n; j += i) { prime[j] = false; } } return prime; } //二項係数(K) template< typename T > T binomial(int64_t N, int64_t K) { if(K < 0 || N < K) return 0; T ret = 1; for(T i = 1; i <= K; ++i) { ret *= N--; ret /= i; } return ret; } //二項係数テーブル(N^2) template< typename T > vector< vector< T > > binomial_table(int N) { vector< vector< T > > mat(N + 1, vector< T >(N + 1)); for(int i = 0; i <= N; i++) { for(int j = 0; j <= i; j++) { if(j == 0 || j == i) mat[i][j] = 1; else mat[i][j] = mat[i - 1][j - 1] + mat[i - 1][j]; } } return mat; } //Gragh template template< typename T > struct edge { int src, to; T cost; edge(int to, T cost) : src(-1), to(to), cost(cost) {} edge(int src, int to, T cost) : src(src), to(to), cost(cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template< typename T > using Edges = vector< edge< T > >; template< typename T > using WeightedGraph = vector< Edges< T > >; using UnWeightedGraph = vector< vector< int > >; template< typename T > using Matrix = vector< vector< T > >; //unionfind struct UnionFind { vector< int > data; UnionFind(int sz) { data.assign(sz, -1); } bool unite(int x, int y) { x = find(x), y = find(y); if(x == y) return (false); if(data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; return (true); } int find(int k) { if(data[k] < 0) return (k); return (data[k] = find(data[k])); } int size(int k) { return (-data[find(k)]); } }; int AAA=0; //DIJKSTRA(ElogV)最短路 template< typename T > vector< T > dijkstra(WeightedGraph< T > &g, int s) { const auto INF = numeric_limits< T >::max(); vector< T > dist(g.size(), INF); using Pi = pair< T, int >; priority_queue< Pi, vector< Pi >, greater< Pi > > que; dist[s] = 0; que.emplace(dist[s], s); while(!que.empty()) { T cost; int idx; tie(cost, idx) = que.top(); que.pop(); if(dist[idx] < cost) continue; for(auto &e : g[idx]) { auto next_cost = cost + e.cost; if(dist[e.to] <= next_cost) continue; dist[e.to] = next_cost; AAA++; que.emplace(dist[e.to], e.to); } } return dist; } //prim最小全域木 template< typename T > T prim(WeightedGraph< T > &g) { using Pi = pair< T, int >; T total = 0; vector< bool > used(g.size(), false); priority_queue< Pi, vector< Pi >, greater< Pi > > que; que.emplace(0, 0); while(!que.empty()) { auto p = que.top(); que.pop(); if(used[p.second]) continue; used[p.second] = true; total += p.first; for(auto &e : g[p.second]) { que.emplace(e.cost, e.to); } } return total; } //bellman_ford(VE)単一始点最短路 template< typename T > vector< T > bellman_ford(Edges< T > &edges, int V, int s) { const auto INF = numeric_limits< T >::max(); vector< T > dist(V, INF); dist[s] = 0; for(int i = 0; i < V - 1; i++) { for(auto &e : edges) { if(dist[e.src] == INF) continue; dist[e.to] = min(dist[e.to], dist[e.src] + e.cost); } } for(auto &e : edges) { if(dist[e.src] == INF) continue; if(dist[e.src] + e.cost < dist[e.to]) return vector< T >(); } return dist; } //memo cout << fixed << setprecision(桁数);// int read(){ int x=0; char c; while(((c=getchar())>'9' || c<'0')&&c!='-'); const int f=(c=='-')&&(c=getchar()); while(x=x*10-48+c,(c=getchar())>='0'&&c<='9'); return f?-x:x; } int main(void){ int N = read(); int X = read(); int max = 0; int buf = 0; rep(i, N){ max = max > (buf=read()) ? max : buf; } printf("%s", max >= X ? "Yes":"No"); return 0; }