#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; constexpr int INF = 1001001001; constexpr int mod = 1000000007; // constexpr int mod = 998244353; template inline bool chmax(T& x, T y){ if(x < y){ x = y; return true; } return false; } template inline bool chmin(T& x, T y){ if(x > y){ x = y; return true; } return false; } template struct Dinic{ const flow_t INF; struct Edge{ int to; flow_t cap; int rev; bool isrev; Edge(int to, flow_t cap, int rev, bool isrev) : to(to), cap(cap), rev(rev), isrev(isrev) {} }; vector> graph; vector min_cost; // sからの距離(bfsで調べる) vector iter; // どこまで調べ終わったか(dfs時に使用) Dinic(int V) : INF(numeric_limits::max() / 2){ graph.resize(V); } void add_edge(int from, int to, flow_t cap){ graph[from].push_back(Edge(to, cap, graph[to].size(), false)); graph[to].push_back(Edge(from, 0, graph[from].size() - 1, true)); } // 最短路探索 bool bfs(int s, int t){ min_cost.assign(graph.size(), -1); queue que; min_cost[s] = 0; que.push(s); while(!que.empty() && min_cost[t] == -1){ int p = que.front(); que.pop(); for(auto &e : graph[p]){ if(e.cap > 0 && min_cost[e.to] == -1){ min_cost[e.to] = min_cost[p] + 1; que.push(e.to); } } } return min_cost[t] != -1; } flow_t dfs(int v, int t, flow_t flow){ if(v == t) return flow; for(int &i = iter[v]; i < (int)graph[v].size(); ++i){ Edge &e = graph[v][i]; if(e.cap > 0 && min_cost[v] < min_cost[e.to]){ flow_t d = dfs(e.to, t, min(flow, e.cap)); if(d > 0){ e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } flow_t max_flow(int s, int t){ flow_t flow = 0; // 最短路を求めて、そのパスに最大流を流す while(bfs(s, t)){ iter.assign(graph.size(), 0); flow_t f = 0; while((f = dfs(s, t, INF)) > 0) flow += f; } return flow; } }; constexpr int dx[4] = {1, 0, -1, 0}; constexpr int dy[4] = {0, 1, 0, -1}; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int N, M, white = 0, black = 0; cin >> N >> M; vector> S(N, vector(M)); Dinic d(N * M + 2); int s = N * M, t = s + 1; for(int i = 0; i < N; ++i){ for(int j = 0; j < M; ++j){ char ch; cin >> ch; if(ch == 'w'){ white += 1; S[i][j] = 1; } else if(ch == 'b'){ black += 1; S[i][j] = -1; } if((i + j) % 2 == 0) d.add_edge(s, M * i + j, 1); else d.add_edge(M * i + j, t, 1); } } for(int x = 0; x < N; ++x){ for(int y = 0; y < M; ++y){ if((x + y) % 2 == 1) continue; for(int i = 0; i < 4; ++i){ int nx = x + dx[i], ny = y + dy[i]; if(nx < 0 || nx >= N || ny < 0 || ny >= M) continue; if(S[x][y] * S[nx][ny] == -1){ d.add_edge(M * x + y, M * nx + ny, 1); } } } } int match = d.max_flow(s, t); cout << match * 100 + (min(white, black) - match) * 10 + max(white, black) - min(white, black) << endl; return 0; }