import sys INF = 1 << 60 MOD = 10**9 + 7 # 998244353 sys.setrecursionlimit(2147483647) input = lambda:sys.stdin.readline().rstrip() from math import gcd from collections import Counter, defaultdict N = 1_000_000 primes = [] sieve = list(range(N + 1)) for i in range(2, N + 1): if sieve[i] == i: primes.append(i) for p in primes: if sieve[i] < p or i * p > N: break sieve[i * p] = p def _primality_test(n): d = (n - 1) // ((n - 1) & -(n - 1)) s = ((n - 1) // d).bit_length() for a in (2, 7, 61) if n < 4_759_123_141 else (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37): y = pow(a, d, n) if y == 1: continue for _ in range(s): if y == n - 1: break y = y * y % n else: return False return True def prime_factorization(n): res = Counter() queue = [n] for n in queue: if n < len(sieve): while n > 1: res[sieve[n]] += 1 n //= sieve[n] continue if _primality_test(n): res[n] += 1 continue c, m = 0, 1 << n.bit_length() - 3 while True: c += 1 y = g = q = r = 1 while g == 1: x, k = y, 0 for _ in range(r): y = (y * y + c) % n while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = (y * y + c) % n q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = (ys * ys + c) % n g = gcd(abs(x - ys), n) if g != n: queue.append(g) queue.append(n // g) break return res def modinv(a, m): b, u, v = m, 1, 0 while b: a, b, u, v = b, a - a // b * b, v, u - a // b * v return u % m def garner(R, M): T = [] for r, m in zip(R, M): c = 1 for t, _m in zip(T, M): r -= c * t c = c * _m % m T.append(r * modinv(c, m) % m) return T def crt(R, M, MOD=0): X = defaultdict(lambda:(0, 0)) for r, m in zip(R, M): for p, e in prime_factorization(m).items(): _e, _r = X[p] if (r - _r) % p**min(e, _e): return -1 if e > _e: X[p] = (e, r) R, M = [], [] for p, v in X.items(): R.append(v[1]) M.append(p**v[0]) res, c = 0, 1 for t, m in zip(garner(R, M), M): res += c * t c = c * m % MOD if MOD else c * m return res % MOD if MOD else res def resolve(): n = int(input()) R, M = [0] * n, [0] * n for i in range(n): R[i], M[i] = map(int, input().split()) if max(R) == 0: l = 1 for m in M: l = l // gcd(l, m) * m print(l % MOD) else: print(crt(R, M, MOD)) resolve()