#include using u32 = unsigned; using u64 = unsigned long long; /* [x^{0 mod x^{4k+4}} z^{h-w}] (z+1/z+x+1/x)^{h+w}(1-x^{2k+2}) [x^{0 mod x^{4k+4}} z^{h-w}] (z+x)^{h+w} (1 + 1/(zx))^{h+w}(1-x^{2k+2}) \sum_{i=0}^{h+w} binom(h+w, i) * bionm(h+w, i+w-h) * I[h+w-i - (i+w-h) == 0] 0 k * k 0 k * */ constexpr u32 mod = 998244353; u32 fact[400001]; u32 ifact[400001]; u32 binom(u32 n, u32 k){ return (u64) fact[n] * ifact[k] % mod * ifact[n-k] % mod; } u32 pw(u32 a, u32 n){ u32 r = 1; for(; n; n >>= 1){ if(n&1) r = (u64) r * a % mod; a = (u64) a * a % mod; } return r; } u32 inv(u32 a){ return pw(a, mod-2); } int main(){ u32 h, w, k; std::cin >> h >> w >> k; h--, w--; k /= 2; fact[0] = 1; for(u32 i = 1; i <= h+w; i++) fact[i] = (u64) i * fact[i-1] % mod; ifact[h+w] = inv(fact[h+w]); for(u32 i = h+w; i > 0; i--) ifact[i-1] = (u64) i * ifact[i] % mod; if(h > w) std::swap(h, w); u64 ans = 0; for(u32 i = 0; i <= 2*h; i++){ int j = 2*((int) h - (int) i) % (int) (4*(k+1)); if(j < 0) j += 4*(k+1); if(j != 0 && (u32) j != 2*(k+1)) continue; u64 tmp = (u64) binom(h+w, i) * binom(h+w, 2*h-i) % mod; if(j == 0) ans += tmp; else ans += mod - tmp; } std::cout << ans % mod << std::endl; return 0; }