#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

struct Xor128 {
  int rand() {
    unsigned int t = x ^ (x << 11);
    x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
    return static_cast<int>(w);
  }
  int rand(int ub) {
    int res = rand() % ub;
    return res < 0 ? res + ub : res;
  }
  int rand(int lb, int ub) { return lb + rand(ub - lb); }
  long long randll() {
    unsigned long long res = static_cast<unsigned long long>(rand()) << 32;
    return static_cast<long long>(res | rand());
  }
  long long randll(long long ub) {
    long long res = randll() % ub;
    return res < 0 ? res + ub : res;
  }
  long long randll(long long lb, long long ub) { return lb + randll(ub - lb); }
private:
  unsigned int x = 123456789, y = 362436069, z = 521288629, w = static_cast<unsigned int>(std::time(nullptr));
} xor128;

long long euler_phi(long long n) {
  assert(n >= 1);
  long long res = n;
  for (long long i = 2; i * i <= n; ++i) {
    if (n % i == 0) {
      res -= res / i;
      while (n % i == 0) n /= i;
    }
  }
  if (n > 1) res -= res / n;
  return res;
}

template <typename T>
std::vector<std::pair<T, int>> prime_factorization(T n) {
  std::vector<std::pair<T, int>> res;
  for (T i = 2; i * i <= n; ++i) {
    if (n % i != 0) continue;
    int exponent = 0;
    while (n % i == 0) {
      ++exponent;
      n /= i;
    }
    res.emplace_back(i, exponent);
  }
  if (n != 1) res.emplace_back(n, 1);
  return res;
}

long long mod_pow(long long base, long long exponent, int mod) {
  base %= mod;
  long long res = 1;
  while (exponent > 0) {
    if (exponent & 1) (res *= base) %= mod;
    (base *= base) %= mod;
    exponent >>= 1;
  }
  return res;
}

bool is_primitive_root(long long root, long long m) {
  if ((root %= m) < 0) root += m;
  if (std::__gcd(root, m) > 1) return false;
  static std::map<long long, long long> phi;
  if (phi.count(m) == 0) phi[m] = euler_phi(m);
  long long phi_m = phi[m];
  static std::map<long long, std::vector<std::pair<long long, int>>> pf;
  if (pf.count(phi_m) == 0) pf[phi_m] = prime_factorization(phi_m);
  for (const std::pair<long long, int> &pr : pf[phi_m]) {
    if (mod_pow(root, phi_m / pr.first, m) == 1) return false;
  }
  return true;
}

int main() {
  int t;
  std::cin >> t;
  while (t--) {
    int v, x;
    std::cin >> v >> x;
    int p = v * x + 1, root = 0;
    do {
      root = xor128.rand(1, p);
    } while (!is_primitive_root(root, p));
    long long xth_root = mod_pow(root, v, p);
    std::vector<int> a(x, 1);
    for (int i = 1; i < x; ++i) a[i] = a[i - 1] * xth_root % p;
    std::sort(a.begin(), a.end());
    for (int i = 0; i < x; ++i) std::cout << a[i] << " \n"[i + 1 == x];
  }
  return 0;
}