#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; struct Xor128 { int rand() { unsigned int t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); return static_cast<int>(w); } int rand(int ub) { int res = rand() % ub; return res < 0 ? res + ub : res; } int rand(int lb, int ub) { return lb + rand(ub - lb); } long long randll() { unsigned long long res = static_cast<unsigned long long>(rand()) << 32; return static_cast<long long>(res | rand()); } long long randll(long long ub) { long long res = randll() % ub; return res < 0 ? res + ub : res; } long long randll(long long lb, long long ub) { return lb + randll(ub - lb); } private: unsigned int x = 123456789, y = 362436069, z = 521288629, w = static_cast<unsigned int>(std::time(nullptr)); } xor128; long long euler_phi(long long n) { assert(n >= 1); long long res = n; for (long long i = 2; i * i <= n; ++i) { if (n % i == 0) { res -= res / i; while (n % i == 0) n /= i; } } if (n > 1) res -= res / n; return res; } template <typename T> std::vector<std::pair<T, int>> prime_factorization(T n) { std::vector<std::pair<T, int>> res; for (T i = 2; i * i <= n; ++i) { if (n % i != 0) continue; int exponent = 0; while (n % i == 0) { ++exponent; n /= i; } res.emplace_back(i, exponent); } if (n != 1) res.emplace_back(n, 1); return res; } long long mod_pow(long long base, long long exponent, int mod) { base %= mod; long long res = 1; while (exponent > 0) { if (exponent & 1) (res *= base) %= mod; (base *= base) %= mod; exponent >>= 1; } return res; } bool is_primitive_root(long long root, long long m) { if ((root %= m) < 0) root += m; if (std::__gcd(root, m) > 1) return false; static std::map<long long, long long> phi; if (phi.count(m) == 0) phi[m] = euler_phi(m); long long phi_m = phi[m]; static std::map<long long, std::vector<std::pair<long long, int>>> pf; if (pf.count(phi_m) == 0) pf[phi_m] = prime_factorization(phi_m); for (const std::pair<long long, int> &pr : pf[phi_m]) { if (mod_pow(root, phi_m / pr.first, m) == 1) return false; } return true; } int main() { int t; std::cin >> t; while (t--) { int v, x; std::cin >> v >> x; int p = v * x + 1, root = 0; do { root = xor128.rand(1, p); } while (!is_primitive_root(root, p)); long long xth_root = mod_pow(root, v, p); std::vector<int> a(x, 1); for (int i = 1; i < x; ++i) a[i] = a[i - 1] * xth_root % p; std::sort(a.begin(), a.end()); for (int i = 0; i < x; ++i) std::cout << a[i] << " \n"[i + 1 == x]; } return 0; }