fn main() { let mut io = IO::new(); input!{ from io, n: usize, v: i64, mut o: (Usize1, Usize1), g: [[i64; n]; n] } let mut dist = vec![vec![0; n]; n]; dist[0][0] = v; let mut q = DoublePriorityHeap::new(); q.push((v, 0, 0)); while let Some((d, i, j)) = q.pop_max() { if d < dist[i][j] { continue; } if i > 0 { let nx = if o == (i-1, j) { o = (std::usize::MAX, std::usize::MAX); (dist[i][j] - g[i-1][j]) * 2 } else { dist[i][j] - g[i-1][j] }; if nx > dist[i-1][j] { dist[i-1][j] = nx; q.push((nx, i-1, j)); } } if j > 0 { let nx = if o == (i, j-1) { o = (std::usize::MAX, std::usize::MAX); (dist[i][j] - g[i][j-1]) * 2 } else { dist[i][j] - g[i][j-1] }; if nx > dist[i][j-1] { dist[i][j-1] = nx; q.push((nx, i, j-1)); } } if i + 1 < n { let nx = if o == (i+1, j) { o = (std::usize::MAX, std::usize::MAX); (dist[i][j] - g[i+1][j]) * 2 } else { dist[i][j] - g[i+1][j] }; if nx > dist[i+1][j] { dist[i+1][j] = nx; q.push((nx, i+1, j)); } } if j + 1 < n { let nx = if o == (i, j+1) { o = (std::usize::MAX, std::usize::MAX); (dist[i][j] - g[i][j+1]) * 2 } else { dist[i][j] - g[i][j+1] }; if nx > dist[i][j+1] { dist[i][j+1] = nx; q.push((nx, i, j+1)); } } } io.println(if dist[n-1][n-1] > 0 { "YES" } else { "NO" }); } // ------------ DoublePriorityHeap start ------------ #[derive(Default)] pub struct DoublePriorityHeap(Vec); impl DoublePriorityHeap { pub fn new() -> Self { Self(Vec::new()) } pub fn from(vec: &[T]) -> Self { let mut l = Self(vec.to_vec()); l.build(); l } pub fn push(&mut self, x: T) { self.0.push(x); self.up(self.0.len() - 1, 1); } pub fn pop_min(&mut self) -> Option { if self.0.len() < 3 { self.0.pop() } else { let ret = self.0.swap_remove(1); let k = self.down(1); self.up(k, 1); Some(ret) } } pub fn pop_max(&mut self) -> Option { if self.0.len() < 2 { self.0.pop() } else { let ret = self.0.swap_remove(0); let k = self.down(0); self.up(k, 1); Some(ret) } } pub fn get_min(&self) -> Option<&T> { if self.0.len() < 2 { self.0.get(0) } else { self.0.get(1) } } pub fn get_max(&self) -> Option<&T> { self.0.get(0) } fn build(&mut self) { let n = self.0.len(); for i in (0..n).rev() { if i & 1 == 1 && self.0[i-1] < self.0[i] { self.0.swap(i-1, i); } let k = self.down(i); self.up(k, i); } } #[inline] fn parent(k: usize) -> usize { (k >> 1).wrapping_sub(1) & !1 } fn down(&mut self, mut k: usize) -> usize { let n = self.0.len(); let mut c: usize; if k & 1 == 1 { // min heap while 2 * k + 1 < n { c = 2 * k + 3; if n <= c || self.0[c-2] < self.0[c] { c -= 2; } if c < n && self.0[c] < self.0[k] { self.0.swap(k, c); k = c; } else { break } } } else { // max heap while 2 * k + 2 < n { c = 2 * k + 4; if n <= c || self.0[c] < self.0[c-2] { c -= 2; } if c < n && self.0[k] < self.0[c] { self.0.swap(k, c); k = c; } else { break } } } k } fn up(&mut self, mut k: usize, root: usize) { if (k | 1) < self.0.len() && self.0[k & !1] < self.0[k | 1] { self.0.swap(k & !1, k | 1); k ^= 1; } let mut p = Self::parent(k); // max heap while root < k && self.0[p] < self.0[k] { self.0.swap(k, p); k = p; p = Self::parent(k) } // min heap p |= 1; while root < k && self.0[k] < self.0[p] { self.0.swap(k, p); k = p; p = Self::parent(k) | 1; } } } // ------------ DoublePriorityHeap end ------------ // ------------ algebraic traits start ------------ use std::marker::Sized; use std::ops::*; /// 元 pub trait Element: Sized + Clone + PartialEq {} impl Element for T {} /// 結合性 pub trait Associative: Magma {} /// マグマ pub trait Magma: Element + Add {} impl> Magma for T {} /// 半群 pub trait SemiGroup: Magma + Associative {} impl SemiGroup for T {} /// モノイド pub trait Monoid: SemiGroup + Zero {} impl Monoid for T {} pub trait ComMonoid: Monoid + AddAssign {} impl ComMonoid for T {} /// 群 pub trait Group: Monoid + Neg {} impl> Group for T {} pub trait ComGroup: Group + ComMonoid {} impl ComGroup for T {} /// 半環 pub trait SemiRing: ComMonoid + Mul + One {} impl + One> SemiRing for T {} /// 環 pub trait Ring: ComGroup + SemiRing {} impl Ring for T {} pub trait ComRing: Ring + MulAssign {} impl ComRing for T {} /// 体 pub trait Field: ComRing + Div + DivAssign {} impl + DivAssign> Field for T {} /// 加法単元 pub trait Zero: Element { fn zero() -> Self; fn is_zero(&self) -> bool { *self == Self::zero() } } /// 乗法単元 pub trait One: Element { fn one() -> Self; fn is_one(&self) -> bool { *self == Self::one() } } macro_rules! impl_integer { ($($T:ty,)*) => { $( impl Associative for $T {} impl Zero for $T { fn zero() -> Self { 0 } fn is_zero(&self) -> bool { *self == 0 } } impl<'a> Zero for &'a $T { fn zero() -> Self { &0 } fn is_zero(&self) -> bool { *self == &0 } } impl One for $T { fn one() -> Self { 1 } fn is_one(&self) -> bool { *self == 1 } } impl<'a> One for &'a $T { fn one() -> Self { &1 } fn is_one(&self) -> bool { *self == &1 } } )* }; } impl_integer! { i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize, } // ------------ algebraic traits end ------------ // ------------ io module start ------------ use std::io::{stdout, BufWriter, Read, StdoutLock, Write}; pub struct IO { iter: std::str::SplitAsciiWhitespace<'static>, buf: BufWriter>, } impl IO { pub fn new() -> Self { let mut input = String::new(); std::io::stdin().read_to_string(&mut input).unwrap(); let input = Box::leak(input.into_boxed_str()); let out = Box::new(stdout()); IO { iter: input.split_ascii_whitespace(), buf: BufWriter::new(Box::leak(out).lock()), } } fn scan_str(&mut self) -> &'static str { self.iter.next().unwrap() } pub fn scan(&mut self) -> ::Output { ::scan(self) } pub fn scan_vec(&mut self, n: usize) -> Vec<::Output> { (0..n).map(|_| self.scan::()).collect() } pub fn print(&mut self, x: T) { ::print(self, x); } pub fn println(&mut self, x: T) { self.print(x); self.print("\n"); } pub fn iterln>(&mut self, mut iter: I, delim: &str) { if let Some(v) = iter.next() { self.print(v); for v in iter { self.print(delim); self.print(v); } } self.print("\n"); } pub fn flush(&mut self) { self.buf.flush().unwrap(); } } impl Default for IO { fn default() -> Self { Self::new() } } pub trait Scan { type Output; fn scan(io: &mut IO) -> Self::Output; } macro_rules! impl_scan { ($($t:tt),*) => { $( impl Scan for $t { type Output = Self; fn scan(s: &mut IO) -> Self::Output { s.scan_str().parse().unwrap() } } )* }; } impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64); pub enum Bytes {} impl Scan for Bytes { type Output = &'static [u8]; fn scan(s: &mut IO) -> Self::Output { s.scan_str().as_bytes() } } pub enum Chars {} impl Scan for Chars { type Output = Vec; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().collect() } } pub enum Usize1 {} impl Scan for Usize1 { type Output = usize; fn scan(s: &mut IO) -> Self::Output { s.scan::().wrapping_sub(1) } } impl Scan for (T, U) { type Output = (T::Output, U::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s)) } } impl Scan for (T, U, V) { type Output = (T::Output, U::Output, V::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s)) } } impl Scan for (T, U, V, W) { type Output = (T::Output, U::Output, V::Output, W::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s), W::scan(s)) } } pub trait Print { fn print(w: &mut IO, x: Self); } macro_rules! impl_print_int { ($($t:ty),*) => { $( impl Print for $t { fn print(w: &mut IO, x: Self) { w.buf.write_all(x.to_string().as_bytes()).unwrap(); } } )* }; } impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64); impl Print for u8 { fn print(w: &mut IO, x: Self) { w.buf.write_all(&[x]).unwrap(); } } impl Print for &[u8] { fn print(w: &mut IO, x: Self) { w.buf.write_all(x).unwrap(); } } impl Print for &str { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl Print for String { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl Print for (T, U) { fn print(w: &mut IO, (x, y): Self) { w.print(x); w.print(" "); w.print(y); } } impl Print for (T, U, V) { fn print(w: &mut IO, (x, y, z): Self) { w.print(x); w.print(" "); w.print(y); w.print(" "); w.print(z); } } mod neboccoio_macro { #[macro_export] macro_rules! input { (@start $io:tt @read @rest) => {}; (@start $io:tt @read @rest, $($rest: tt)*) => { input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @rest mut $($rest:tt)*) => { input!(@start $io @read @mut [mut] @rest $($rest)*) }; (@start $io:tt @read @rest $($rest:tt)*) => { input!(@start $io @read @mut [] @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => { let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::>>(); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => { let $($mut)* $var = $io.scan_vec::<$kind>($len); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => { let $($mut)* $var = $io.scan::<$kind>(); input!(@start $io @read @rest $($rest)*) }; (from $io:tt $($rest:tt)*) => { input!(@start $io @read @rest $($rest)*) }; } } // ------------ io module end ------------