#include template std::map Factors(T x) { std::map m; for (T i = 2; i * i <= x;) { if (x % i == 0) { m[i]++; x /= i; } else { ++i; } } if (x > 1) m[x]++; return m; } namespace { using i32 = int32_t; using i64 = int64_t; } // namespace #define BIN_OPS(F) F(+) F(-) F(*) F(/) #define CMP_OPS(F) F(!=) F(<) F(<=) F(==) F(>) F(>=) template class ModInt { public: ModInt() : n_(0) {} ModInt(i64 n) : n_(n % Mod) { if (n_ < 0) { // In C++, (-n)%m == -(n%m). n_ += Mod; } } ModInt& operator+=(const ModInt& m) { n_ += m.n_; if (n_ >= Mod) { n_ -= Mod; } return *this; } ModInt& operator++() { return (*this) += 1; } ModInt& operator-=(const ModInt& m) { n_ -= m.n_; if (n_ < 0) { n_ += Mod; } return *this; } ModInt& operator--() { return (*this) -= 1; } ModInt& operator*=(const ModInt& m) { n_ = i64(n_) * m.n_ % Mod; return *this; } ModInt& operator/=(const ModInt& m) { *this *= m.Inv(); return *this; } #define DEFINE(op) \ ModInt operator op(const ModInt& m) const { return ModInt(*this) op## = m; } BIN_OPS(DEFINE) #undef DEFINE #define DEFINE(op) \ bool operator op(const ModInt& m) const { return n_ op m.n_; } CMP_OPS(DEFINE) #undef DEFINE ModInt operator-() const { return ModInt(-n_); } ModInt Pow(i64 n) const { if (n < 0) { return Inv().Pow(-n); } // a * b ^ n = answer. ModInt a = 1, b = *this; while (n != 0) { if (n & 1) { a *= b; } n /= 2; b *= b; } return a; } ModInt Inv() const { #if DEBUG assert(n_ != 0); #endif if (n_ > kMaxCacheSize) { // Compute the inverse based on Fermat's little theorem. Note that this // only works when n_ and Mod are relatively prime. The theorem says that // n_^(Mod-1) = 1 (mod Mod). So we can compute n_^(Mod-2). return Pow(Mod - 2); } for (i64 i = inv_.size(); i <= n_; ++i) { inv_.push_back(i <= 1 ? i : (Mod / i * -inv_[Mod % i])); } return inv_[n_]; } i64 value() const { return n_; } static ModInt Fact(i64 n) { for (i64 i = fact_.size(); i <= n; ++i) { fact_.push_back(i == 0 ? 1 : fact_.back() * i); } return fact_[n]; } static ModInt InvFact(i64 n) { for (i64 i = inv_fact_.size(); i <= n; ++i) { inv_fact_.push_back(i == 0 ? 1 : inv_fact_.back() / i); } return inv_fact_[n]; } static ModInt Comb(i64 n, i64 k) { return Perm(n, k) * InvFact(k); } static ModInt CombSlow(i64 n, i64 k) { return PermSlow(n, k) * InvFact(k); } static ModInt Perm(i64 n, i64 k) { #if DEBUG assert(n <= kMaxCacheSize && "n is too large. If k is small, consider using PermSlow."); #endif return Fact(n) * InvFact(n - k); } static ModInt PermSlow(i64 n, i64 k) { ModInt p = 1; for (i64 i = 0; i < k; ++i) { p *= (n - i); } return p; } private: i32 n_; inline static std::vector fact_; inline static std::vector inv_fact_; inline static std::vector inv_; static const i64 kMaxCacheSize = 1000000; }; #define DEFINE(op) \ template \ ModInt operator op(const T& t, const ModInt& m) { \ return ModInt(t) op m; \ } BIN_OPS(DEFINE) CMP_OPS(DEFINE) #undef DEFINE template std::ostream& operator<<(std::ostream& out, const ModInt& m) { out << m.value(); return out; } #include template struct is_dereferenceable : std::false_type {}; template struct is_dereferenceable())>> : std::true_type {}; template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type {}; template struct is_applicable : std::false_type {}; template struct is_applicable::value)>> : std::true_type {}; template void debug(const T& value, const Ts&... args); template void debug(const T& v) { if constexpr (is_dereferenceable::value) { std::cerr << "{"; if (v) { debug(*v); } else { std::cerr << "nil"; } std::cerr << "}"; } else if constexpr (is_iterable::value && !std::is_same::value) { std::cerr << "{"; for (auto it = std::begin(v); it != std::end(v); ++it) { if (it != std::begin(v)) std::cerr << ", "; debug(*it); } std::cerr << "}"; } else if constexpr (is_applicable::value) { std::cerr << "{"; std::apply([](const auto&... args) { debug(args...); }, v); std::cerr << "}"; } else { std::cerr << v; } } template void debug(const T& value, const Ts&... args) { debug(value); std::cerr << ", "; debug(args...); } #if DEBUG #define dbg(...) \ do { \ cerr << #__VA_ARGS__ << ": "; \ debug(__VA_ARGS__); \ cerr << " (L" << __LINE__ << ")\n"; \ } while (0) #else #define dbg(...) #endif void read_from_cin() {} template void read_from_cin(T& value, Ts&... args) { std::cin >> value; read_from_cin(args...); } #define rd(type, ...) \ type __VA_ARGS__; \ read_from_cin(__VA_ARGS__); #define ints(...) rd(int, __VA_ARGS__); #define strings(...) rd(string, __VA_ARGS__); template void write_to_cout(const T& value) { if constexpr (std::is_same::value) { std::cout << (value ? "Yes" : "No"); } else if constexpr (is_iterable::value && !std::is_same::value) { for (auto it = std::begin(value); it != std::end(value); ++it) { if (it != std::begin(value)) std::cout << " "; std::cout << *it; } } else { std::cout << value; } } template void write_to_cout(const T& value, const Ts&... args) { write_to_cout(value); std::cout << ' '; write_to_cout(args...); } #define wt(...) \ do { \ write_to_cout(__VA_ARGS__); \ cout << '\n'; \ } while (0) #define all(x) (x).begin(), (x).end() #define eb(...) emplace_back(__VA_ARGS__) #define pb(...) push_back(__VA_ARGS__) #define dispatch(_1, _2, _3, name, ...) name #define as_i64(x) \ ( \ [] { \ static_assert( \ std::is_integral< \ typename std::remove_reference::type>::value, \ "rep macro supports std integral types only"); \ }, \ static_cast(x)) #define rep3(i, a, b) for (std::int64_t i = as_i64(a); i < as_i64(b); ++i) #define rep2(i, n) rep3(i, 0, n) #define rep1(n) rep2(_loop_variable_, n) #define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define rrep3(i, a, b) for (std::int64_t i = as_i64(b) - 1; i >= as_i64(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep2(_loop_variable_, n) #define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define each3(k, v, c) for (auto&& [k, v] : c) #define each2(e, c) for (auto&& e : c) #define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__) template std::istream& operator>>(std::istream& is, std::vector& v) { for (T& vi : v) is >> vi; return is; } template std::istream& operator>>(std::istream& is, std::pair& p) { is >> p.first >> p.second; return is; } template bool chmax(T& a, U b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T& a, U b) { if (a > b) { a = b; return true; } return false; } template auto max(T a, U b) { return a > b ? a : b; } template auto min(T a, U b) { return a < b ? a : b; } template std::int64_t sz(const T& v) { return std::size(v); } template std::int64_t popcount(T i) { return std::bitset::digits>(i).count(); } template bool hasbit(T s, int i) { return std::bitset::digits>(s)[i]; } template auto div_floor(T n, U d) { if (d < 0) { n = -n; d = -d; } if (n < 0) { return -((-n + d - 1) / d); } return n / d; }; template auto div_ceil(T n, U d) { if (d < 0) { n = -n; d = -d; } if (n < 0) { return -(-n / d); } return (n + d - 1) / d; } template bool even(T x) { return x % 2 == 0; } const std::int64_t big = std::numeric_limits::max() / 4; using i64 = std::int64_t; using i32 = std::int32_t; template using low_priority_queue = std::priority_queue, std::greater>; template using V = std::vector; template using VV = V>; void Main(); int main() { Main(); return 0; } const auto& Fix = boost::hana::fix; using namespace std; #define int i64 using mint = ModInt<>; void Main() { strings(n); each(e, n) e -= '0'; int N = sz(n); vector dp(N + 1, vector(3, vector(3, vector(3, mint(0))))); dp[0][0][0][0] = 1; V two(10), five(10); rep(i, 10) { auto fs = Factors(i); two[i] = fs[2]; five[i] = fs[5]; } rep(i, N) { // j == 0: all zeros on the left // j == 1: equal to the input on the left // j == 2: non zero but smaller than the input on the left rep(j, 3) { // k: the number of 2s. k == 2 indicates that it may be more than 2. rep(k, 3) { // l: the number of 5s. l == 2 indicates that it may be more than 2. rep(l, 3) { rep(m, 10) { int nj; if (m == 0) { if (j == 0) { nj = 0; } else { continue; } } else { if (j == 0) { if (i == 0) { if (m < n[0]) { nj = 2; } else if (m == n[0]) { nj = 1; } else { continue; } } else { nj = 2; } } else if (j == 1) { if (m < n[i]) { nj = 2; } else if (m == n[i]) { nj = 1; } else { continue; } } else { nj = 2; } } int nk = m == 0 ? 0 : min(2, k + two[m]); int nl = m == 0 ? 0 : min(2, l + five[m]); dp[i + 1][nj][nk][nl] += dp[i][j][k][l]; } } } } } mint ans = 0; rep(i, 3) ans += dp[N][i][2][2]; wt(ans); }