#include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define rep(i,n) for(ll i = 0;i=0;i--) #define ALL(a) a.begin(),a.end() template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } typedef long long ll; typedef long double ld; const int MAX = 510000; const int MOD = 1e9 + 7; struct Dinic { private: struct edge { int to; ll cap; int rev; bool isrev; int idx; }; vector< vector< edge > > graph; vector< int > min_cost, iter; bool bfs(int s, int t) { min_cost.assign(graph.size(), -1); queue< int > que; min_cost[s] = 0; que.push(s); while (!que.empty() && min_cost[t] == -1) { int p = que.front(); que.pop(); for (auto& e : graph[p]) { if (e.cap > 0 && min_cost[e.to] == -1) { min_cost[e.to] = min_cost[p] + 1; que.push(e.to); } } }return min_cost[t] != -1; } ll dfs(int idx, const int t, ll flow) { if (idx == t) return flow; for (int& i = iter[idx]; i < graph[idx].size(); i++) { edge& e = graph[idx][i]; if (e.cap > 0 && min_cost[idx] < min_cost[e.to]) { ll d = dfs(e.to, t, min(flow, e.cap)); if (d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } }return 0; } public: Dinic(int V) : graph(V) {} void add_edge(int from, int to, ll cap, int idx = -1) { graph[from].push_back({ to, cap, (int)graph[to].size(), false, idx }); graph[to].push_back({ from, 0, (int)graph[from].size() - 1, true, idx }); } ll max_flow(int s, int t) { ll flow = 0; while (bfs(s, t)) { iter.assign(graph.size(), 0); ll f = 0; while ((f = dfs(s, t, 1e9 + 6)) > 0) flow += f; }return flow; }void output() { for (int i = 0; i < graph.size();i++) { for (auto& e : graph[i]) { if (e.isrev) continue; auto& rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl; } } } }; int dx[4] = { -1,1,0,0 }, dy[4] = { 0,0,1,-1 }; int main() { int h, w; cin >> h >> w; vector> G(h, vector(w)); vector r(h), c(w); Dinic dn(h + w + 2); int s = h + w, t = h + w + 1; rep(i, h) { ll sum = 0; rep(j, w) { cin >> G[i][j]; dn.add_edge(i, j + h, G[i][j]); sum += G[i][j]; }dn.add_edge(s, i, sum); }ll ans = 0; rep(i, h) { cin >> r[i]; ans += r[i]; dn.add_edge(i, t, r[i]); }rep(j, w) { cin >> c[j]; ans += c[j]; dn.add_edge(j + h, t, c[j]); }cout << ans - dn.max_flow(s, t) << endl; }