SIZE=2*10**5+5; MOD=10**9+7 #998244353 #ここを変更する inv = [0]*SIZE # inv[j] = j^{-1} mod MOD fac = [0]*SIZE # fac[j] = j! mod MOD finv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD fac[0] = fac[1] = 1 finv[0] = finv[1] = 1 for i in range(2,SIZE): fac[i] = fac[i-1]*i%MOD finv[-1] = pow(fac[-1],MOD-2,MOD) for i in range(SIZE-1,0,-1): finv[i-1] = finv[i]*i%MOD inv[i] = finv[i]*fac[i-1]%MOD def choose(n,r): # nCk mod MOD の計算 if 0 <= r <= n: return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD else: return 0 def fpsdiv(f,g,N): assert g[0] != 0 f = f[:] lg = len(g) if g[0] != 1: a = pow(g[0],MOD-2,MOD) for i in range(len(f)): f[i] = f[i]*a%MOD for i in range(lg): g[i] = g[i]*a%MOD f += [0]*max(0,N+1-len(f)) for i in range(N+1): for j in range(1,min(i+1,lg)): f[i] = (f[i] - g[j]*f[i-j])%MOD return f n = int(input()) N = n//2 f = [choose(n+2*i,i) for i in range(N+1)] g = [choose(i+i,i) for i in range(N+1)] h = fpsdiv(f,g,N) print(sum(h))