#include using namespace std; typedef long long ll; typedef vector VI; typedef vector VVI; typedef vector VL; typedef vector> VVL; typedef pair Pair; typedef tuple tpl; #define ALL(a) (a).begin(),(a).end() #define SORT(c) sort((c).begin(),(c).end()) #define REVERSE(c) reverse((c).begin(),(c).end()) #define EXIST(m,v) (m).find((v)) != (m).end() #define LB(a,x) lower_bound((a).begin(), (a).end(), x) - (a).begin() #define UB(a,x) upper_bound((a).begin(), (a).end(), x) - (a).begin() #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define REP(i,n) FOR(i,0,n) #define RFOR(i,a,b) for(int i=(a)-1;i>=(b);--i) #define RREP(i,n) RFOR(i,n,0) #define en "\n" constexpr double EPS = 1e-9; constexpr double PI = 3.1415926535897932; constexpr int INF = 2147483647; constexpr long long LINF = 1LL<<60; constexpr long long MOD = 1000000007; // 998244353; template inline bool chmax(T& a, T b){if(a inline bool chmin(T& a, T b){if(a>b){a=b;return true;}return false;} template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(),std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; void Main(){ int N,C; cin >> N >> C; int ans = 0; VI P(N); REP(i,N) cin >> P[i], ans += P[i]; int GETA = 100000; mcf_graph g(N+C+2); REP(i,C){ int t,x; cin >> t >> x; if(t == 1){ REP(j,N){ int cost = P[j] - max(0,P[j]-x); g.add_edge(i,C+j,1,GETA-cost); } } else{ REP(j,N){ int cost = P[j] - P[j] * (100-x) / 100; g.add_edge(i,C+j,1,GETA-cost); } } } REP(i,C) g.add_edge(N+C,i,1,0); REP(i,N) g.add_edge(C+i,N+C+1,1,0); auto p = g.flow(N+C,N+C+1,min(N,C)); int d = -p.second + p.first*GETA; ans -= d; cout << ans << en; return; } int main(void){ cin.tie(0);cout.tie(0);ios_base::sync_with_stdio(0);cout<>t; REP(_,t) Main(); return 0; }