def polymul(f,g): lf = len(f) lg = len(g) res = [0]*(lf+lg-1) for i in range(lf): for j in range(lg): res[i+j] += f[i]*g[j] res[i+j] %= MOD return res def fps_nth_term(f,g,N): assert g[0] != 0 while N: h = g[:] for i in range(1,len(g),2): h[i] = -h[i] f = polymul(f,h)[N%2:N+1:2] g = polymul(g,h)[:N+1:2] N //= 2 return f[0]*pow(g[0],MOD-2,MOD)%MOD # a[0],...,a[L-2] とL-1次特性多項式 g が与えられているL項間漸化式の第N項 def rec_nth_term(a,g,N): L = len(g) assert len(a) == L-1 f = polymul(a,g)[:L-1] return fps_nth_term(f,g,N) MOD = 10**9+7 ans = rec_nth_term([0,1,2,6],[1,-1,-4,-1,1],int(input())) print(ans%MOD)