#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct LazySegmentTree { using Monoid = typename T::Monoid; using OperatorMonoid = typename T::OperatorMonoid; LazySegmentTree(int n) : LazySegmentTree(std::vector(n, T::m_id())) {} LazySegmentTree(const std::vector &a) : n(a.size()) { while ((1 << height) < n) ++height; p2 = 1 << height; lazy.assign(p2, T::o_id()); dat.assign(p2 << 1, T::m_id()); for (int i = 0; i < n; ++i) dat[i + p2] = a[i]; for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); } void set(int idx, const Monoid val) { idx += p2; for (int i = height; i > 0; --i) propagate(idx >> i); dat[idx] = val; for (int i = 1; i <= height; ++i) { int current_idx = idx >> i; dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]); } } void apply(int idx, const OperatorMonoid val) { idx += p2; for (int i = height; i > 0; --i) propagate(idx >> i); dat[idx] = T::apply(dat[idx], val); for (int i = 1; i <= height; ++i) { int current_idx = idx >> i; dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]); } } void apply(int left, int right, const OperatorMonoid val) { if (right <= left) return; left += p2; right += p2; int left_ctz = __builtin_ctz(left); for (int i = height; i > left_ctz; --i) propagate(left >> i); int right_ctz = __builtin_ctz(right); for (int i = height; i > right_ctz; --i) propagate(right >> i); for (int l = left, r = right; l < r; l >>= 1, r >>= 1) { if (l & 1) sub_apply(l++, val); if (r & 1) sub_apply(--r, val); } for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); } Monoid get(int left, int right) { if (right <= left) return T::m_id(); left += p2; right += p2; int left_ctz = __builtin_ctz(left); for (int i = height; i > left_ctz; --i) propagate(left >> i); int right_ctz = __builtin_ctz(right); for (int i = height; i > right_ctz; --i) propagate(right >> i); Monoid l_res = T::m_id(), r_res = T::m_id(); for (; left < right; left >>= 1, right >>= 1) { if (left & 1) l_res = T::m_merge(l_res, dat[left++]); if (right & 1) r_res = T::m_merge(dat[--right], r_res); } return T::m_merge(l_res, r_res); } Monoid operator[](const int idx) { int node = idx + p2; for (int i = height; i > 0; --i) propagate(node >> i); return dat[node]; } template int find_right(int left, G g) { if (left >= n) return n; left += p2; for (int i = height; i > 0; --i) propagate(left >> i); Monoid val = T::m_id(); do { while (!(left & 1)) left >>= 1; Monoid nx = T::m_merge(val, dat[left]); if (!g(nx)) { while (left < p2) { propagate(left); left <<= 1; nx = T::m_merge(val, dat[left]); if (g(nx)) { val = nx; ++left; } } return left - p2; } val = nx; ++left; } while (__builtin_popcount(left) > 1); return n; } template int find_left(int right, G g) { if (right <= 0) return -1; right += p2; for (int i = height; i > 0; --i) propagate((right - 1) >> i); Monoid val = T::m_id(); do { --right; while (right > 1 && (right & 1)) right >>= 1; Monoid nx = T::m_merge(dat[right], val); if (!g(nx)) { while (right < p2) { propagate(right); right = (right << 1) + 1; nx = T::m_merge(dat[right], val); if (g(nx)) { val = nx; --right; } } return right - p2; } val = nx; } while (__builtin_popcount(right) > 1); return -1; } private: int n, p2, height = 0; std::vector dat; std::vector lazy; void sub_apply(int idx, const OperatorMonoid &val) { dat[idx] = T::apply(dat[idx], val); if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val); } void propagate(int idx) { // assert(1 <= idx && idx < p2); sub_apply(idx << 1, lazy[idx]); sub_apply((idx << 1) + 1, lazy[idx]); lazy[idx] = T::o_id(); } }; namespace monoid { template struct RangeMinimumAndUpdateQuery { using Monoid = T; using OperatorMonoid = T; static constexpr T m_id() { return std::numeric_limits::max(); } static constexpr T o_id() { return std::numeric_limits::max(); } static T m_merge(const T &a, const T &b) { return std::min(a, b); } static T o_merge(const T &a, const T &b) { return b == o_id() ? a : b; } static T apply(const T &a, const T &b) { return b == o_id()? a : b; } }; template struct RangeMaximumAndUpdateQuery { using Monoid = T; using OperatorMonoid = T; static constexpr T m_id() { return std::numeric_limits::lowest(); } static constexpr T o_id() { return std::numeric_limits::lowest(); } static T m_merge(const T &a, const T &b) { return std::max(a, b); } static T o_merge(const T &a, const T &b) { return b == o_id() ? a : b; } static T apply(const T &a, const T &b) { return b == o_id()? a : b; } }; template struct RangeMinimumAndAddQuery { using Monoid = T; using OperatorMonoid = T; static constexpr T m_id() { return Inf; } static constexpr T o_id() { return 0; } static T m_merge(const T &a, const T &b) { return std::min(a, b); } static T o_merge(const T &a, const T &b) { return a + b; } static T apply(const T &a, const T &b) { return a + b; } }; template struct RangeMaximumAndAddQuery { using Monoid = T; using OperatorMonoid = T; static constexpr T m_id() { return -Inf; } static constexpr T o_id() { return 0; } static T m_merge(const T &a, const T &b) { return std::max(a, b); } static T o_merge(const T &a, const T &b) { return a + b; } static T apply(const T &a, const T &b) { return a + b; } }; template struct RangeSumAndUpdateQuery { struct Node { T sum; int len; }; static std::vector init(int n) { return std::vector(n, Node{0, 1}); } using Monoid = Node; using OperatorMonoid = T; static constexpr Node m_id() { return {0, 0}; } static constexpr T o_id() { return std::numeric_limits::max(); } static Node m_merge(const Node &a, const Node &b) { return Node{a.sum + b.sum, a.len + b.len}; } static T o_merge(const T &a, const T &b) { return b == o_id() ? a : b; } static Node apply(const Node &a, const T &b) { return Node{b == o_id() ? a.sum : b * a.len, a.len}; } }; template struct RangeSumAndAddQuery { struct Node { T sum; int len; }; static std::vector init(int n) { return std::vector(n, Node{0, 1}); } using Monoid = Node; using OperatorMonoid = T; static constexpr Node m_id() { return {0, 0}; } static constexpr T o_id() { return 0; } static Node m_merge(const Node &a, const Node &b) { return Node{a.sum + b.sum, a.len + b.len}; } static T o_merge(const T &a, const T &b) { return a + b; } static Node apply(const Node &a, const T &b) { return Node{a.sum + b * a.len, a.len}; } }; } // monoid template struct BIT { BIT(int n, const Abelian ID = 0) : n(n), ID(ID), dat(n, ID) {} void add(int idx, Abelian val) { while (idx < n) { dat[idx] += val; idx |= idx + 1; } } Abelian sum(int idx) const { Abelian res = ID; --idx; while (idx >= 0) { res += dat[idx]; idx = (idx & (idx + 1)) - 1; } return res; } Abelian sum(int left, int right) const { return left < right ? sum(right) - sum(left) : ID; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } int lower_bound(Abelian val) const { if (val <= ID) return 0; int res = 0, exponent = 1; while (exponent <= n) exponent <<= 1; for (int mask = exponent >> 1; mask > 0; mask >>= 1) { if (res + mask - 1 < n && dat[res + mask - 1] < val) { val -= dat[res + mask - 1]; res += mask; } } return res; } private: int n; const Abelian ID; std::vector dat; }; int main() { int n, q; cin >> n >> q; auto a = monoid::RangeSumAndUpdateQuery::init(n); REP(i, n) cin >> a[i].sum; LazySegmentTree> seg(a); BIT bit(n); REP(i, n) bit.add(i, 1); set st; REP(i, n) st.emplace(i); while (q--) { int t, l, r; cin >> t >> l >> r; l = bit.lower_bound(l); r = bit.lower_bound(r); if (t == 1) { ll sum = seg.get(l, r + 1).sum; seg.apply(l, r + 1, 0); seg.set(l, monoid::RangeSumAndUpdateQuery::Node{sum, 1}); for (auto it = next(st.lower_bound(l)); it != st.end() && *it <= r; it = st.erase(it)) { bit.add(*it, -1); } } else if (t == 2) { cout << seg.get(l, r + 1).sum << '\n'; } } return 0; }