// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] use std::collections::*; use std::convert::*; use std::convert::{From, Into}; use std::fmt::Debug; use std::fs::File; use std::io::prelude::*; use std::io::*; use std::marker::Copy; use std::mem::*; use std::ops::Bound::*; use std::ops::{Add, Mul, Neg, Sub}; use std::str; use std::vec; use std::{cmp, process::Output}; use std::{cmp::Ordering, env::consts::DLL_PREFIX}; use std::{cmp::Ordering::*, f32::consts::PI}; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const FINF: f64 = 122337203685.0; const INF128: i128 = 1223372036854775807000000000000; const LINF: i64 = 2147483647; // const MOD: i64 = 1000000007; const MOD: i64 = 998244353; const UMOD: usize = MOD as usize; use std::cmp::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { println!("{}", $x); }; } macro_rules! pp { ($x:expr) => { println!("{:?}", $x); }; } macro_rules! d { ($x:expr) => { dbg!($x); }; } // use str::Chars; #[allow(dead_code)] fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } // #[allow(dead_code)] // fn readi() -> (i64) { // let mut str = String::new(); // let _ = stdin().read_line(&mut str).unwrap(); // let mut iter = str.split_whitespace(); // iter.next().unwrap().parse::().unwrap() // } #[allow(dead_code)] fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_vec2(n: u32) -> Vec> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } fn readff() -> (f64, f64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } fn readcc() -> (char, char) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } #[allow(dead_code)] fn readuuu() -> (usize, usize, usize) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } #[allow(dead_code)] fn readuuuu() -> (usize, usize, usize, usize) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } fn readiiii() -> (i64, i64, i64, i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), iter.next().unwrap().parse::().unwrap(), ) } // / Equivalent to std::lowerbound and std::upperbound in c++ fn neighbors(tree: &BTreeSet, val: i64) -> (Option<&i64>, Option<&i64>) { use std::ops::Bound::*; let mut before = tree.range((Unbounded, Excluded(val))); let mut after = tree.range((Excluded(val), Unbounded)); (before.next_back(), after.next()) } trait SEGLazyImpl { type Monoid: Copy; type OperatorMonoid: Copy + PartialEq; fn m0() -> Self::Monoid; fn om0() -> Self::OperatorMonoid; fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid; fn g(x: Self::Monoid, y: Self::OperatorMonoid, weight: usize) -> Self::Monoid; fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid; } struct SEGLazy { n: usize, data: Vec, lazy: Vec, weight: Vec, } impl SEGLazy { pub fn new(n: usize, init: T::Monoid) -> SEGLazy { let weights = vec![1; n]; Self::with_weight(n, init, weights) } pub fn with_weight(n: usize, init: T::Monoid, weights: Vec) -> Self { let mut m = 1; while m < n { m *= 2; } SEGLazy { n: m, data: vec![init; m * 2], lazy: vec![T::om0(); m * 2], weight: Self::mk_weight(&weights), } } fn mk_weight(xs: &[usize]) -> Vec { let n = xs.len(); let mut m = 1; while m < n { m *= 2; } let mut res = vec![0; 2 * m]; for i in 0..n { res[m + i] = xs[i]; } for k in (1..m).rev() { let l = 2 * k; let r = 2 * k + 1; res[k] = res[l] + res[r]; } res } fn propagate(&mut self, k: usize) { let weight = self.weight[k]; if self.lazy[k] != T::om0() { if k < self.n { self.lazy[2 * k + 0] = T::h(self.lazy[2 * k + 0], self.lazy[k]); self.lazy[2 * k + 1] = T::h(self.lazy[2 * k + 1], self.lazy[k]); } self.data[k] = T::g(self.data[k], self.lazy[k], weight); self.lazy[k] = T::om0(); } } fn do_update( &mut self, a: usize, b: usize, x: T::OperatorMonoid, k: usize, l: usize, r: usize, ) -> T::Monoid { self.propagate(k); if r <= a || b <= l { self.data[k] } else if a <= l && r <= b { self.lazy[k] = T::h(self.lazy[k], x); self.propagate(k); self.data[k] } else { self.data[k] = T::f( self.do_update(a, b, x, 2 * k + 0, l, (l + r) >> 1), self.do_update(a, b, x, 2 * k + 1, (l + r) >> 1, r), ); self.data[k] } } #[doc = "[l,r)"] pub fn update(&mut self, l: usize, r: usize, x: T::OperatorMonoid) -> T::Monoid { let n = self.n; self.do_update(l, r, x, 1, 0, n) } fn do_query(&mut self, a: usize, b: usize, k: usize, l: usize, r: usize) -> T::Monoid { self.propagate(k); if r <= a || b <= l { T::m0() } else if a <= l && r <= b { self.data[k] } else { T::f( self.do_query(a, b, 2 * k + 0, l, (l + r) >> 1), self.do_query(a, b, 2 * k + 1, (l + r) >> 1, r), ) } } #[doc = "[l,r)"] pub fn query(&mut self, l: usize, r: usize) -> T::Monoid { let n = self.n; self.do_query(l, r, 1, 0, n) } } struct RUQ; impl SEGLazyImpl for RUQ { type Monoid = i64; type OperatorMonoid = i64; fn m0() -> Self::Monoid { 0 } fn om0() -> Self::OperatorMonoid { 0 } fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid { x + y } fn g(x: Self::Monoid, y: Self::OperatorMonoid, _: usize) -> Self::Monoid { max(0, y) } fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid { x + y } } // #[test] // fn test_MAX_RUQ() { // let mut seg: SEGLazy = SEGLazy::new(10, MAX_RUQ::m0()); // assert_eq!(seg.query(0, 3), 0); // seg.update(0, 2, 10); // [10,10,0,...] // assert_eq!(seg.query(0, 3), 10); // assert_eq!(seg.query(2, 3), 0); // seg.update(1, 5, 20); // assert_eq!(seg.query(0, 3), 20); // assert_eq!(seg.query(0, 1), 10); // seg.update(0, 1, 5); // assert_eq!(seg.query(0, 1), 5); // } fn solve() { let (n, q) = readuu(); let mut vec: Vec = read_vec(); let mut acc = vec![0; n + 1]; for i in 0..n { acc[i + 1] = acc[i] + vec[i]; } let mut seg: SEGLazy = SEGLazy::new(202020, 0); for i in 0..202020 { seg.update(i, i + 1, 1); } for i in 0..q { let (t, l, r) = readuuu(); let mut f = |x: usize| -> bool { return seg.query(0, x) < l as i64; }; let mut ok = 0; let mut ng = n; while (ng - ok) > 1 { let mid = (ok + ng) / 2; if f(mid) { ok = mid; } else { ng = mid; } } let mut l1 = ok; let mut f2 = |x: usize| -> bool { return seg.query(0, x) < r as i64; }; let mut ok = 0; let mut ng = n + 1; while (ng - ok) > 1 { let mid = (ok + ng) / 2; if f2(mid) { ok = mid; } else { ng = mid; } } let mut r1 = ok; if t == 1 { seg.update(l1 + 1, r1 + 1, -1); } else { let mut res = acc[r1 + 1] - acc[l1]; println!("{:?}", res); // for i in 0..n { // print!("{} ", seg.query(0, i + 1)); // } // p!(""); // for i in 0..n { // print!("{} ", i); // } // p!(""); } // pp!((l1, r1)); } return; } fn main() { solve() }