func main() var n: int :: cui@inputInt() var a: []bool :: #[n + 1]bool var map: Map :: #Map for i(0, n - 1) var key: int :: cui@inputInt() var value: int :: i do map.add(key, value) end for var it: Node :: map.begin() var ans: int :: 0 for(1, n) var value: int :: it.value if(!a[value + 1]) do a[value] :: true do ans :+ 1 end if do it :: it.next end for do cui@print("\{ans}\n") class Node() +var height: int +var key: int +var value: int +var prev: Node +var next: Node +var lst: Node +var rst: Node +func init(key: int, value: int, prev: Node, next: Node): Node do me.height :: 1 do me.key :: key do me.value :: value do me.prev :: prev do me.next :: next ret me end func end class ; AVL Tree class Map() var root: Node var change: bool var num: int +func size(): int ret me.num end func +func begin(): Node var t: Node :: me.root while(true) if(t.lst =& null) ret t end if do t :: t.lst end while end func func height(t: Node): int ret t =& null ?(0, t.height) end func func bias(t: Node): int ret me.height(t.lst) - me.height(t.rst) end func func modHeight(t: Node) do t.height :: 1 + lib@max(me.height(t.lst), me.height(t.rst)) end func func rotateL(v: Node): Node var u: Node :: v.rst var t: Node :: u.lst do u.lst :: v do v.rst :: t ret u end func func rotateR(u: Node): Node var v: Node :: u.lst var t: Node :: v.rst do v.rst :: u do u.lst :: t ret v end func func rotateLR(t: Node): Node do t.lst :: me.rotateL(t.lst) ret me.rotateR(t) end func func rotateRL(t: Node): Node do t.rst :: me.rotateR(t.rst) ret me.rotateL(t) end func +func balanceL(t: Node): Node if(!me.change) ret t end if var h: int :: me.height(t) if(me.bias(t) = 2) if(me.bias(t.lst) >= 0) do t :: me.rotateR(t) else do t :: me.rotateLR(t) end if else do me.modHeight(t) end if do me.change :: (h <> me.height(t)) ret t end func +func balanceR(t: Node): Node if(!me.change) ret t end if var h: int :: me.height(t) if(me.bias(t) = -2) if(me.bias(t.rst) <= 0) do t :: me.rotateL(t) else do t :: me.rotateRL(t) end if else do me.modHeight(t) end if do me.change :: (h <> me.height(t)) ret t end func +func add(key: int, value: int) do me.root :: me.addSub(me.root, null, key, value) end func +func addSub(t: Node, parent: Node, key: int, value: int): Node if(t =& null) var a: Node do me.change :: true if(parent =& null) do a :: (#Node).init(key, value, null, null) elif(key < parent.key) do a :: (#Node).init(key, value, parent.prev, parent) if(parent.prev <>& null) do parent.prev.next :: a end if do parent.prev :: a elif(key > parent.key) do a :: (#Node).init(key, value, parent, parent.next) if(parent.next <>& null) do parent.next.prev :: a end if do parent.next :: a end if do me.num :+ 1 ret a elif(key < t.key) do t.lst :: me.addSub(t.lst, t, key, value) ret me.balanceL(t) elif(key > t.key) do t.rst :: me.addSub(t.rst, t, key, value) ret me.balanceR(t) else do me.change :: false do t.value :: value ret t end if end func +func find(key: int): Node var t: Node :: me.root while loop(t <>& null) if(key < t.key) do t :: t.lst elif(key > t.key) do t :: t.rst else break loop end if end while ret t end func +func exist(key: int): bool ret me.find(key) <>& null end func +func get(key: int): int var t: Node :: me.find(key) if(t =& null) ret 0 else ret t.value end if end func +func lower_bound(key: int): Node var t: Node :: me.root if(t =& null) ret null end if while(true) if(key < t.key) if(t.lst =& null) ret t end if if(key > t.lst.key & t.lst.rst =& null) ret t end if do t :: t.lst elif(key > t.key) if(t.rst =& null) ret null end if do t :: t.rst else ret t end if end while end func end class end func