#include //#include //#include //#include #define rep(i, a) for (int i = (int)0; i < (int)a; ++i) #define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i) #define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i) #define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i) #define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define popcount __builtin_popcount #define fi first #define se second using ll = long long; constexpr ll mod = 1e9 + 7; constexpr ll mod_998244353 = 998244353; constexpr ll INF = 1LL << 60; // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") //using lll=boost::multiprecision::cpp_int; //using Double=boost::multiprecision::number>;//仮数部が1024桁 template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template T mypow(T x, T n, const T &p = -1) { //x^nをmodで割った余り if (p != -1) { x %= p; } T ret = 1; while (n > 0) { if (n & 1) { if (p != -1) ret = (ret * x) % p; else ret *= x; } if (p != -1) x = (x * x) % p; else x *= x; n >>= 1; } return ret; } using namespace std; //using namespace atcoder; template struct Modint{ int x; Modint():x(0){} Modint(int64_t y):x((y%mod+mod)%mod){} Modint &operator+=(const Modint &p){ if((x+=p.x)>=mod) x -= mod; return *this; } Modint &operator-=(const Modint &p){ if((x+=mod-p.x)>=mod) x -= mod; return *this; } Modint &operator*=(const Modint &p){ x = (1LL * x * p.x) % mod; return *this; } Modint &operator/=(const Modint &p){ *this *= p.inverse(); return *this; } Modint operator-() const { return Modint(-x); } Modint operator+(const Modint &p) const{ return Modint(*this) += p; } Modint operator-(const Modint &p) const{ return Modint(*this) -= p; } Modint operator*(const Modint &p) const{ return Modint(*this) *= p; } Modint operator/(const Modint &p) const{ return Modint(*this) /= p; } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const{return x != p.x;} Modint inverse() const{//非再帰拡張ユークリッド int a = x, b = mod, u = 1, v = 0; while(b>0){ int t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Modint(u); } Modint pow(int64_t n) const{//繰り返し二乗法 Modint ret(1), mul(x); while(n>0){ if(n&1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os,const Modint &p){ return os << p.x; } }; using modint = Modint; using modint2= Modint; void solve() { int h,w; cin>>h>>w; vector>a(h,vector(w)); rep(i,h)rep(j,w)cin>>a[i][j]; vectorr(h,1),c(w,1); vector>sum(h+1,vector(w+1)); rep(i,h){ rep(j,w){ if(a[i][j])r[i]*=a[i][j]; } } rep(i,w){ rep(j,h){ if(a[j][i])c[i]*=a[j][i]; } } rep(i,h){ rep(j,w){ sum[i+1][j+1]=sum[i+1][j]+sum[i][j+1]-sum[i][j]+(a[i][j]==0); } } modint res=1; rep(i,h)rep(j,w)if(a[i][j])res*=a[i][j]; int q; cin>>q; while(q--){ int x,y; cin>>x>>y; x--;y--; modint ans=res; int lu=sum[x][y]-sum[x][0]-sum[0][y]+sum[0][0]; int ru=sum[h][y]+sum[x+1][0]-sum[x+1][y]-sum[h][0]; int ld=sum[x][w]+sum[0][y+1]-sum[x][y+1]-sum[0][w]; int rd=sum[h][w]+sum[x+1][y+1]-sum[h][y+1]-sum[x+1][w]; //cout<