//#pragma GCC target ("avx2") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; using ld = long double; using H = pair; using P = pair; using vi = vector; #define all(a) (a).begin(),(a).end() #define fs first #define sc second #define xx first #define yy second.first #define zz second.second #define Q(i,j,k) mkp((i),mkp((j),(k))) #define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++) #define rep(i,n) rng(i, 0, (n)) #define mkp make_pair #define vec vector #define pb emplace_back #define siz(a) int((a).size()) #define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end()) #define getidx(b,i) (lower_bound(all((b)),(i))-(b).begin()) #define ssp(i,n) (i==(ll)(n)-1?"\n":" ") #define ctoi(c) (int)((c)-'0') #define itoc(c) (char)((c)+'0') #define cyes printf("Yes\n") #define cno printf("No\n") #define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--) #define gcj printf("Case #%lld: ",quetimes_+1) #define readv(a,n) (a).resize((n),0);rep(i,(n)) (a)[i]=read() #define found(a,x) (a.find(x)!=a.end()) constexpr ll mod = (ll)1e9 + 7; constexpr ll Mod = 998244353; constexpr ld EPS = 1e-10; constexpr ll inf = (ll)3 * 1e18; constexpr int Inf = (ll)15 * 1e8; constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 }; templatebool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } templatebool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } ll read() { ll u, k = scanf("%lld", &u); return u; } string reads() { string s; cin >> s; return s; } H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; } bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; } bool ina(int t, int l, int r) { return l <= t && t < r; } ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; } ll ppc(ll x) { int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++; return sum; } template void fin(T x) { cout << x << endl; exit(0); } template class csum { vec v; public: csum(vec& a) :v(a) { build(); } csum() {} csum(int sz) { init(sz); } void init(int sz) { v = vector(sz + 1, 0); } void init(vec& a) { v = a; build(); } void build() { for (int i = 1; i < v.size(); i++) v[i] += v[i - 1]; } void add(int l, int r, T x) { v[l] += x; v[r] -= x; }//[l,r) void add(int t, T x) { v[t] += x; }//[l,r) //[l,r] T a(int l, int r) { if (r < l) return 0; return v[r] - (l == 0 ? 0 : v[l - 1]); } //[l,r) T b(int l, int r) { return a(l, r - 1); } T a(pairt) { return a(t.first, t.second); } T b(pairt) { return b(t.first, t.second); } T operator[](int x)const { return v[x]; } }; class via { using H = pair; bool comp; public: vectora; via() :comp(true) {} via(vectordat) :a(dat), comp(false) { build(); } void push(int l, int r) { a.push_back(H{ l,r }); comp = false; } void push(H a) { push(a.first, a.second); } void build() { if (comp) return; comp = true; sort(a.begin(), a.end()); int fst = -1; ll lst = -1; vectorb; for (int i = 0; i < a.size(); i++) { if (fst < 0) fst = i, lst = a[i].second; if (lst < a[i].first) { b.push_back(H{ a[fst].first,lst }); fst = i, lst = a[i].second; } else if (lst < a[i].second) lst = a[i].second; } if (~fst) b.push_back(H{ a[fst].first, lst }); a = b; } ll size() { return ll(a.size()); } ll sum() { build(); ll sum = 0; for (auto g : a) sum += g.second - g.first; return sum; } via inter(via& v) { build(); v.build(); via ret; for (auto g : a) ret.push(g); for (auto g : v.a) ret.push(g); ret.build(); return ret; } via comb(via& v) { build(); v.build(); int s = 0, t = 0; via ret; while (s < a.size() && t < v.size()) { if (v[t].second <= a[s].first) t++; else if (a[s].second <= v[t].first) s++; else { ret.push(max(a[s].first, v[t].first), min(a[s].second, v[t].second)); if (a[s].second <= v[t].second) s++; else t++; } } return ret; } H& operator[](int t) { return a[t]; } }; template class modint { public:ll v; modint(ll v = 0) { s(v % mod + mod); } constexpr static int fn_ = (ll)2e6 + 5; static vectorfact, comp; modint pow(ll x) const { modint b(v), c(1); while (x) { if (x & 1) c *= b; b *= b; x >>= 1; } return c; } inline modint& s(int vv) { v = vv < mod ? vv : vv - mod; return *this; } inline modint inv()const { return pow(mod - 2); } inline modint operator-()const { return modint() - *this; } inline modint& operator+=(const modint b) { return s(v + b.v); } inline modint& operator-=(const modint b) { return s(v + mod - b.v); } inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; } inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; } inline modint operator+(const modint& b) const { return modint(v) += b; } inline modint operator-(const modint& b) const { return modint(v) -= b; } inline modint operator*(const modint& b) const { return modint(v) *= b; } inline modint operator/(const modint& b) const { return modint(v) /= b; } friend ostream& operator<<(ostream& os, const modint& m) { return os << m.v; } friend istream& operator>>(istream& is, modint& m) { int x; is >> x; m = modint(x); return is; } bool operator<(const modint& r)const { return v < r.v; } bool operator>(const modint& r)const { return v > r.v; } bool operator<=(const modint& r)const { return v <= r.v; } bool operator>=(const modint& r)const { return v >= r.v; } bool operator==(const modint& r)const { return v == r.v; } bool operator!=(const modint& r)const { return v != r.v; } explicit operator bool()const { return v; } explicit operator int()const { return v; } modint comb(modint k) { if (k > *this) return modint(); if (fact.empty()) combinit(); if (v >= fn_) { if (k > *this - k) k = *this - k; modint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i); return tmp * comp[k.v]; } return fact[v] * comp[k.v] * comp[v - k.v]; }//nCk modint perm(modint k) { if (k > *this) return modint(); if (fact.empty()) combinit(); if (v >= fn_) { modint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i); return tmp; } return fact[v] * comp[v - k.v]; }//nPk static void combinit() { fact.assign(fn_, modint()); fact[0] = 1; for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i); comp.assign(fn_, modint()); comp[fn_ - 1] = fact[fn_ - 1].inv(); for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1); } }; using mint = modint; template<>vec mint::fact = vec(); template<>vec mint::comp = vec(); //-------------------------------------------------------------- //-------------------------------------------------------------- signed main() { cyes; }