#include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector& vec, const V& val, int len) { vec.assign(len, val); } template void ndarray(vector& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template vector sort_unique(vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template istream &operator>>(istream &is, vector &vec) { for (auto &v : vec) is >> v; return is; } template ostream &operator<<(ostream &os, const vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template ostream &operator<<(ostream &os, const array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template istream &operator>>(istream &is, tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template ostream &operator<<(ostream &os, const tuple &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; } #endif template ostream &operator<<(ostream &os, const deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template ostream &operator<<(ostream &os, const set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const pair &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template ostream &operator<<(ostream &os, const map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #else #define dbg(x) (x) #endif // This program is the modificatiosn of the [lemon::NetworkSimplex](http://lemon.cs.elte.hu/pub/doc/latest-svn/a00404.html) // /* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ template class NetworkSimplex { public: using Node = int; using Arc = int; static const int INVALID = -1; typedef V Value; /// The type of the flow amounts, capacity bounds and supply values typedef C Cost; /// The type of the arc costs public: enum ProblemType { INFEASIBLE, OPTIMAL, UNBOUNDED }; /// \brief Constants for selecting the type of the supply constraints. /// /// Enum type containing constants for selecting the supply type, /// i.e. the direction of the inequalities in the supply/demand /// constraints of the \ref min_cost_flow "minimum cost flow problem". /// /// The default supply type is \c GEQ, the \c LEQ type can be /// selected using \ref supplyType(). /// The equality form is a special case of both supply types. enum SupplyType { /// This option means that there are "greater or equal" /// supply/demand constraints in the definition of the problem. GEQ, /// This option means that there are "less or equal" /// supply/demand constraints in the definition of the problem. LEQ }; /// \brief Constants for selecting the pivot rule. /// /// Enum type containing constants for selecting the pivot rule for /// the \ref run() function. /// /// \ref NetworkSimplex provides five different implementations for /// the pivot strategy that significantly affects the running time /// of the algorithm. /// According to experimental tests conducted on various problem /// instances, \ref BLOCK_SEARCH "Block Search" and /// \ref ALTERING_LIST "Altering Candidate List" rules turned out /// to be the most efficient. /// Since \ref BLOCK_SEARCH "Block Search" is a simpler strategy that /// seemed to be slightly more robust, it is used by default. /// However, another pivot rule can easily be selected using the /// \ref run() function with the proper parameter. enum PivotRule { /// The \e First \e Eligible pivot rule. /// The next eligible arc is selected in a wraparound fashion /// in every iteration. FIRST_ELIGIBLE, /// The \e Best \e Eligible pivot rule. /// The best eligible arc is selected in every iteration. BEST_ELIGIBLE, /// The \e Block \e Search pivot rule. /// A specified number of arcs are examined in every iteration /// in a wraparound fashion and the best eligible arc is selected /// from this block. BLOCK_SEARCH, /// The \e Candidate \e List pivot rule. /// In a major iteration a candidate list is built from eligible arcs /// in a wraparound fashion and in the following minor iterations /// the best eligible arc is selected from this list. CANDIDATE_LIST, /// The \e Altering \e Candidate \e List pivot rule. /// It is a modified version of the Candidate List method. /// It keeps only a few of the best eligible arcs from the former /// candidate list and extends this list in every iteration. ALTERING_LIST }; private: using IntVector = std::vector; using ValueVector = std::vector; using CostVector = std::vector; using CharVector = std::vector; enum ArcState { STATE_UPPER = -1, STATE_TREE = 0, STATE_LOWER = 1 }; enum ArcDirection { DIR_DOWN = -1, DIR_UP = 1 }; private: // Data related to the underlying digraph const Digraph &_graph; int _node_num; int _arc_num; int _all_arc_num; int _search_arc_num; // Parameters of the problem bool _has_lower; SupplyType _stype; Value _sum_supply; // Data structures for storing the digraph IntVector _source; IntVector _target; // Node and arc data ValueVector _lower; ValueVector _upper; ValueVector _cap; CostVector _cost; ValueVector _supply; ValueVector _flow; CostVector _pi; // Data for storing the spanning tree structure IntVector _parent; IntVector _pred; IntVector _thread; IntVector _rev_thread; IntVector _succ_num; IntVector _last_succ; CharVector _pred_dir; CharVector _state; IntVector _dirty_revs; int _root; // Temporary data used in the current pivot iteration int in_arc, join, u_in, v_in, u_out, v_out; Value delta; const Value MAX; public: /// \brief Constant for infinite upper bounds (capacities). /// /// Constant for infinite upper bounds (capacities). /// It is \c std::numeric_limits::infinity() if available, /// \c std::numeric_limits::max() otherwise. const Value INF; private: // Implementation of the First Eligible pivot rule class FirstEligiblePivotRule { private: // References to the NetworkSimplex class const IntVector &_source; const IntVector &_target; const CostVector &_cost; const CharVector &_state; const CostVector &_pi; int &_in_arc; int _search_arc_num; // Pivot rule data int _next_arc; public: // Constructor FirstEligiblePivotRule(NetworkSimplex &ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0) {} // Find next entering arc bool findEnteringArc() { Cost c; for (int e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _in_arc = e; _next_arc = e + 1; return true; } } for (int e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _in_arc = e; _next_arc = e + 1; return true; } } return false; } }; // class FirstEligiblePivotRule // Implementation of the Best Eligible pivot rule class BestEligiblePivotRule { private: // References to the NetworkSimplex class const IntVector &_source; const IntVector &_target; const CostVector &_cost; const CharVector &_state; const CostVector &_pi; int &_in_arc; int _search_arc_num; public: // Constructor BestEligiblePivotRule(NetworkSimplex &ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) {} // Find next entering arc bool findEnteringArc() { Cost c, min = 0; for (int e = 0; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } } return min < 0; } }; // class BestEligiblePivotRule // Implementation of the Block Search pivot rule class BlockSearchPivotRule { private: // References to the NetworkSimplex class const IntVector &_source; const IntVector &_target; const CostVector &_cost; const CharVector &_state; const CostVector &_pi; int &_in_arc; int _search_arc_num; // Pivot rule data int _block_size; int _next_arc; public: // Constructor BlockSearchPivotRule(NetworkSimplex &ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0) { // The main parameters of the pivot rule const double BLOCK_SIZE_FACTOR = 1.0; const int MIN_BLOCK_SIZE = 10; _block_size = std::max(int(BLOCK_SIZE_FACTOR * std::sqrt(double(_search_arc_num))), MIN_BLOCK_SIZE); } // Find next entering arc bool findEnteringArc() { Cost c, min = 0; int cnt = _block_size; int e; for (e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } if (--cnt == 0) { if (min < 0) goto search_end; cnt = _block_size; } } for (e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } if (--cnt == 0) { if (min < 0) goto search_end; cnt = _block_size; } } if (min >= 0) return false; search_end: _next_arc = e; return true; } }; // class BlockSearchPivotRule // Implementation of the Candidate List pivot rule class CandidateListPivotRule { private: // References to the NetworkSimplex class const IntVector &_source; const IntVector &_target; const CostVector &_cost; const CharVector &_state; const CostVector &_pi; int &_in_arc; int _search_arc_num; // Pivot rule data IntVector _candidates; int _list_length, _minor_limit; int _curr_length, _minor_count; int _next_arc; public: /// Constructor CandidateListPivotRule(NetworkSimplex &ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0) { // The main parameters of the pivot rule const double LIST_LENGTH_FACTOR = 0.25; const int MIN_LIST_LENGTH = 10; const double MINOR_LIMIT_FACTOR = 0.1; const int MIN_MINOR_LIMIT = 3; _list_length = std::max(int(LIST_LENGTH_FACTOR * std::sqrt(double(_search_arc_num))), MIN_LIST_LENGTH); _minor_limit = std::max(int(MINOR_LIMIT_FACTOR * _list_length), MIN_MINOR_LIMIT); _curr_length = _minor_count = 0; _candidates.resize(_list_length); } /// Find next entering arc bool findEnteringArc() { Cost min, c; int e; if (_curr_length > 0 && _minor_count < _minor_limit) { // Minor iteration: select the best eligible arc from the // current candidate list ++_minor_count; min = 0; for (int i = 0; i < _curr_length; ++i) { e = _candidates[i]; c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } else if (c >= 0) { _candidates[i--] = _candidates[--_curr_length]; } } if (min < 0) return true; } // Major iteration: build a new candidate list min = 0; _curr_length = 0; for (e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _candidates[_curr_length++] = e; if (c < min) { min = c; _in_arc = e; } if (_curr_length == _list_length) goto search_end; } } for (e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _candidates[_curr_length++] = e; if (c < min) { min = c; _in_arc = e; } if (_curr_length == _list_length) goto search_end; } } if (_curr_length == 0) return false; search_end: _minor_count = 1; _next_arc = e; return true; } }; // class CandidateListPivotRule // Implementation of the Altering Candidate List pivot rule class AlteringListPivotRule { private: // References to the NetworkSimplex class const IntVector &_source; const IntVector &_target; const CostVector &_cost; const CharVector &_state; const CostVector &_pi; int &_in_arc; int _search_arc_num; // Pivot rule data int _block_size, _head_length, _curr_length; int _next_arc; IntVector _candidates; CostVector _cand_cost; // Functor class to compare arcs during sort of the candidate list class SortFunc { private: const CostVector &_map; public: SortFunc(const CostVector &map) : _map(map) {} bool operator()(int left, int right) { return _map[left] < _map[right]; } }; SortFunc _sort_func; public: // Constructor AlteringListPivotRule(NetworkSimplex &ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) { // The main parameters of the pivot rule const double BLOCK_SIZE_FACTOR = 1.0; const int MIN_BLOCK_SIZE = 10; const double HEAD_LENGTH_FACTOR = 0.01; const int MIN_HEAD_LENGTH = 3; _block_size = std::max(int(BLOCK_SIZE_FACTOR * std::sqrt(double(_search_arc_num))), MIN_BLOCK_SIZE); _head_length = std::max(int(HEAD_LENGTH_FACTOR * _block_size), MIN_HEAD_LENGTH); _candidates.resize(_head_length + _block_size); _curr_length = 0; } // Find next entering arc bool findEnteringArc() { // Check the current candidate list int e; Cost c; for (int i = 0; i != _curr_length; ++i) { e = _candidates[i]; c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _cand_cost[e] = c; } else { _candidates[i--] = _candidates[--_curr_length]; } } // Extend the list int cnt = _block_size; int limit = _head_length; for (e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _cand_cost[e] = c; _candidates[_curr_length++] = e; } if (--cnt == 0) { if (_curr_length > limit) goto search_end; limit = 0; cnt = _block_size; } } for (e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _cand_cost[e] = c; _candidates[_curr_length++] = e; } if (--cnt == 0) { if (_curr_length > limit) goto search_end; limit = 0; cnt = _block_size; } } if (_curr_length == 0) return false; search_end: // Perform partial sort operation on the candidate list int new_length = std::min(_head_length + 1, _curr_length); std::partial_sort(_candidates.begin(), _candidates.begin() + new_length, _candidates.begin() + _curr_length, _sort_func); // Select the entering arc and remove it from the list _in_arc = _candidates[0]; _next_arc = e; _candidates[0] = _candidates[new_length - 1]; _curr_length = new_length - 1; return true; } }; // class AlteringListPivotRule public: NetworkSimplex(const Digraph &graph) : _graph(graph), MAX(std::numeric_limits::max()), INF(std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : MAX) { // Check the number types static_assert(std::numeric_limits::is_signed); static_assert(std::numeric_limits::is_signed); static_assert(std::numeric_limits::max() > 0); // Reset data structures reset(); } template NetworkSimplex &lowerMap(const LowerMap &map) { _has_lower = true; for (Arc a = 0; a < _arc_num; a++) _lower[a] = map[a]; return *this; } template NetworkSimplex &upperMap(const UpperMap &map) { for (Arc a = 0; a < _arc_num; a++) _upper[a] = map[a]; return *this; } // Set costs of arcs (default value: 1) template NetworkSimplex &costMap(const CostMap &map) { for (Arc a = 0; a < _arc_num; a++) _cost[a] = map[a]; return *this; } template NetworkSimplex &supplyMap(const SupplyMap &map) { for (Node n = 0; n < _node_num; n++) _supply[n] = map[n]; return *this; } NetworkSimplex &stSupply(const Node &s, const Node &t, Value k) { // set s-t flow for (int i = 0; i != _node_num; ++i) _supply[i] = 0; _supply[s] = k, _supply[t] = -k; return *this; } /// \brief Set the type of the supply constraints. /// /// This function sets the type of the supply/demand constraints. /// If it is not used before calling \ref run(), the \ref GEQ supply /// type will be used. NetworkSimplex &supplyType(SupplyType supply_type) { _stype = supply_type; return *this; } /// @} /// This function can be called more than once. All the given parameters /// are kept for the next call, unless \ref resetParams() or \ref reset() /// is used, thus only the modified parameters have to be set again. /// If the underlying digraph was also modified after the construction /// of the class (or the last \ref reset() call), then the \ref reset() /// function must be called. ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { if (!init()) return INFEASIBLE; return start(pivot_rule); } /// \brief Reset all the parameters that have been given before. /// /// This function resets all the paramaters that have been given /// before using functions \ref lowerMap(), \ref upperMap(), /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). /// /// It is useful for multiple \ref run() calls. Basically, all the given /// parameters are kept for the next \ref run() call, unless /// \ref resetParams() or \ref reset() is used. /// If the underlying digraph was also modified after the construction /// of the class or the last \ref reset() call, then the \ref reset() /// function must be used, otherwise \ref resetParams() is sufficient. /// /// For example, /// \code /// NetworkSimplex ns(graph); /// /// // First run /// ns.lowerMap(lower).upperMap(upper).costMap(cost) /// .supplyMap(sup).run(); /// /// // Run again with modified cost map (resetParams() is not called, /// // so only the cost map have to be set again) /// cost[e] += 100; /// ns.costMap(cost).run(); /// /// // Run again from scratch using resetParams() /// // (the lower bounds will be set to zero on all arcs) /// ns.resetParams(); /// ns.upperMap(capacity).costMap(cost) /// .supplyMap(sup).run(); /// \endcode /// /// \return (*this) /// /// \see reset(), run() NetworkSimplex &resetParams() { for (int i = 0; i != _node_num; ++i) { _supply[i] = 0; } for (int i = 0; i != _arc_num; ++i) { _lower[i] = 0; _upper[i] = INF; _cost[i] = 1; } _has_lower = false; _stype = GEQ; return *this; } /// \brief Reset the internal data structures and all the parameters /// that have been given before. /// /// This function resets the internal data structures and all the /// paramaters that have been given before using functions \ref lowerMap(), /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), /// \ref supplyType(). /// /// It is useful for multiple \ref run() calls. Basically, all the given /// parameters are kept for the next \ref run() call, unless /// \ref resetParams() or \ref reset() is used. /// If the underlying digraph was also modified after the construction /// of the class or the last \ref reset() call, then the \ref reset() /// function must be used, otherwise \ref resetParams() is sufficient. /// /// See \ref resetParams() for examples. /// /// \return (*this) /// /// \see resetParams(), run() NetworkSimplex &reset() { // Resize vectors _node_num = _graph.countNodes(); _arc_num = _graph.countArcs(); int all_node_num = _node_num + 1; int max_arc_num = _arc_num + 2 * _node_num; _source.resize(max_arc_num); _target.resize(max_arc_num); _lower.resize(_arc_num); _upper.resize(_arc_num); _cap.resize(max_arc_num); _cost.resize(max_arc_num); _supply.resize(all_node_num); _flow.resize(max_arc_num); _pi.resize(all_node_num); _parent.resize(all_node_num); _pred.resize(all_node_num); _pred_dir.resize(all_node_num); _thread.resize(all_node_num); _rev_thread.resize(all_node_num); _succ_num.resize(all_node_num); _last_succ.resize(all_node_num); _state.resize(max_arc_num); for (int a = 0; a < _arc_num; ++a) { _source[a] = _graph.source(a); _target[a] = _graph.target(a); } // Reset parameters resetParams(); return *this; } /// @} template Number totalCost() const { Number c = 0; for (Arc a = 0; a < _arc_num; a++) c += Number(_flow[a]) * Number(_cost[a]); return c; } Value flow(const Arc &a) const { return _flow[a]; } template void flowMap(FlowMap &map) const { for (Arc a = 0; a < _arc_num; a++) { map.set(a, _flow[a]); } } ValueVector flowMap() const { return _flow; } Cost potential(const Node &n) const { return _pi[n]; } template void potentialMap(PotentialMap &map) const { for (int n = 0; n < _graph.V; n++) { map.set(n, _pi[n]); } } CostVector potentialMap() const { return _pi; } private: // Initialize internal data structures bool init() { if (_node_num == 0) return false; // Check the sum of supply values _sum_supply = 0; for (int i = 0; i != _node_num; ++i) { _sum_supply += _supply[i]; } if (!((_stype == GEQ && _sum_supply <= 0) || (_stype == LEQ && _sum_supply >= 0))) return false; // Check lower and upper bounds // LEMON_DEBUG(checkBoundMaps(), "Upper bounds must be greater or equal to the lower bounds"); // Remove non-zero lower bounds if (_has_lower) { for (int i = 0; i != _arc_num; ++i) { Value c = _lower[i]; if (c >= 0) { _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; } else { _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; } _supply[_source[i]] -= c; _supply[_target[i]] += c; } } else { for (int i = 0; i != _arc_num; ++i) { _cap[i] = _upper[i]; } } // Initialize artifical cost Cost ART_COST; if (std::numeric_limits::is_exact) { ART_COST = std::numeric_limits::max() / 2 + 1; } else { ART_COST = 0; for (int i = 0; i != _arc_num; ++i) { if (_cost[i] > ART_COST) ART_COST = _cost[i]; } ART_COST = (ART_COST + 1) * _node_num; } // Initialize arc maps for (int i = 0; i != _arc_num; ++i) { _flow[i] = 0; _state[i] = STATE_LOWER; } // Set data for the artificial root node _root = _node_num; _parent[_root] = -1; _pred[_root] = -1; _thread[_root] = 0; _rev_thread[0] = _root; _succ_num[_root] = _node_num + 1; _last_succ[_root] = _root - 1; _supply[_root] = -_sum_supply; _pi[_root] = 0; // Add artificial arcs and initialize the spanning tree data structure if (_sum_supply == 0) { // EQ supply constraints _search_arc_num = _arc_num; _all_arc_num = _arc_num + _node_num; for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { _parent[u] = _root; _pred[u] = e; _thread[u] = u + 1; _rev_thread[u + 1] = u; _succ_num[u] = 1; _last_succ[u] = u; _cap[e] = INF; _state[e] = STATE_TREE; if (_supply[u] >= 0) { _pred_dir[u] = DIR_UP; _pi[u] = 0; _source[e] = u; _target[e] = _root; _flow[e] = _supply[u]; _cost[e] = 0; } else { _pred_dir[u] = DIR_DOWN; _pi[u] = ART_COST; _source[e] = _root; _target[e] = u; _flow[e] = -_supply[u]; _cost[e] = ART_COST; } } } else if (_sum_supply > 0) { // LEQ supply constraints _search_arc_num = _arc_num + _node_num; int f = _arc_num + _node_num; for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { _parent[u] = _root; _thread[u] = u + 1; _rev_thread[u + 1] = u; _succ_num[u] = 1; _last_succ[u] = u; if (_supply[u] >= 0) { _pred_dir[u] = DIR_UP; _pi[u] = 0; _pred[u] = e; _source[e] = u; _target[e] = _root; _cap[e] = INF; _flow[e] = _supply[u]; _cost[e] = 0; _state[e] = STATE_TREE; } else { _pred_dir[u] = DIR_DOWN; _pi[u] = ART_COST; _pred[u] = f; _source[f] = _root; _target[f] = u; _cap[f] = INF; _flow[f] = -_supply[u]; _cost[f] = ART_COST; _state[f] = STATE_TREE; _source[e] = u; _target[e] = _root; _cap[e] = INF; _flow[e] = 0; _cost[e] = 0; _state[e] = STATE_LOWER; ++f; } } _all_arc_num = f; } else { // GEQ supply constraints _search_arc_num = _arc_num + _node_num; int f = _arc_num + _node_num; for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { _parent[u] = _root; _thread[u] = u + 1; _rev_thread[u + 1] = u; _succ_num[u] = 1; _last_succ[u] = u; if (_supply[u] <= 0) { _pred_dir[u] = DIR_DOWN; _pi[u] = 0; _pred[u] = e; _source[e] = _root; _target[e] = u; _cap[e] = INF; _flow[e] = -_supply[u]; _cost[e] = 0; _state[e] = STATE_TREE; } else { _pred_dir[u] = DIR_UP; _pi[u] = -ART_COST; _pred[u] = f; _source[f] = u; _target[f] = _root; _cap[f] = INF; _flow[f] = _supply[u]; _state[f] = STATE_TREE; _cost[f] = ART_COST; _source[e] = _root; _target[e] = u; _cap[e] = INF; _flow[e] = 0; _cost[e] = 0; _state[e] = STATE_LOWER; ++f; } } _all_arc_num = f; } return true; } // Check if the upper bound is greater than or equal to the lower bound // on each arc. bool checkBoundMaps() { for (int j = 0; j != _arc_num; ++j) { if (_upper[j] < _lower[j]) return false; } return true; } // Find the join node void findJoinNode() { int u = _source[in_arc]; int v = _target[in_arc]; while (u != v) { if (_succ_num[u] < _succ_num[v]) { u = _parent[u]; } else { v = _parent[v]; } } join = u; } // Find the leaving arc of the cycle and returns true if the // leaving arc is not the same as the entering arc bool findLeavingArc() { // Initialize first and second nodes according to the direction // of the cycle int first, second; if (_state[in_arc] == STATE_LOWER) { first = _source[in_arc]; second = _target[in_arc]; } else { first = _target[in_arc]; second = _source[in_arc]; } delta = _cap[in_arc]; int result = 0; Value c, d; int e; // Search the cycle form the first node to the join node for (int u = first; u != join; u = _parent[u]) { e = _pred[u]; d = _flow[e]; if (_pred_dir[u] == DIR_DOWN) { c = _cap[e]; d = c >= MAX ? INF : c - d; } if (d < delta) { delta = d; u_out = u; result = 1; } } // Search the cycle form the second node to the join node for (int u = second; u != join; u = _parent[u]) { e = _pred[u]; d = _flow[e]; if (_pred_dir[u] == DIR_UP) { c = _cap[e]; d = c >= MAX ? INF : c - d; } if (d <= delta) { delta = d; u_out = u; result = 2; } } if (result == 1) { u_in = first; v_in = second; } else { u_in = second; v_in = first; } return result != 0; } // Change _flow and _state vectors void changeFlow(bool change) { // Augment along the cycle if (delta > 0) { Value val = _state[in_arc] * delta; _flow[in_arc] += val; for (int u = _source[in_arc]; u != join; u = _parent[u]) { _flow[_pred[u]] -= _pred_dir[u] * val; } for (int u = _target[in_arc]; u != join; u = _parent[u]) { _flow[_pred[u]] += _pred_dir[u] * val; } } // Update the state of the entering and leaving arcs if (change) { _state[in_arc] = STATE_TREE; _state[_pred[u_out]] = (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; } else { _state[in_arc] = -_state[in_arc]; } } // Update the tree structure void updateTreeStructure() { int old_rev_thread = _rev_thread[u_out]; int old_succ_num = _succ_num[u_out]; int old_last_succ = _last_succ[u_out]; v_out = _parent[u_out]; // Check if u_in and u_out coincide if (u_in == u_out) { // Update _parent, _pred, _pred_dir _parent[u_in] = v_in; _pred[u_in] = in_arc; _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; // Update _thread and _rev_thread if (_thread[v_in] != u_out) { int after = _thread[old_last_succ]; _thread[old_rev_thread] = after; _rev_thread[after] = old_rev_thread; after = _thread[v_in]; _thread[v_in] = u_out; _rev_thread[u_out] = v_in; _thread[old_last_succ] = after; _rev_thread[after] = old_last_succ; } } else { // Handle the case when old_rev_thread equals to v_in // (it also means that join and v_out coincide) int thread_continue = old_rev_thread == v_in ? _thread[old_last_succ] : _thread[v_in]; // Update _thread and _parent along the stem nodes (i.e. the nodes // between u_in and u_out, whose parent have to be changed) int stem = u_in; // the current stem node int par_stem = v_in; // the new parent of stem int next_stem; // the next stem node int last = _last_succ[u_in]; // the last successor of stem int before, after = _thread[last]; _thread[v_in] = u_in; _dirty_revs.clear(); _dirty_revs.push_back(v_in); while (stem != u_out) { // Insert the next stem node into the thread list next_stem = _parent[stem]; _thread[last] = next_stem; _dirty_revs.push_back(last); // Remove the subtree of stem from the thread list before = _rev_thread[stem]; _thread[before] = after; _rev_thread[after] = before; // Change the parent node and shift stem nodes _parent[stem] = par_stem; par_stem = stem; stem = next_stem; // Update last and after last = _last_succ[stem] == _last_succ[par_stem] ? _rev_thread[par_stem] : _last_succ[stem]; after = _thread[last]; } _parent[u_out] = par_stem; _thread[last] = thread_continue; _rev_thread[thread_continue] = last; _last_succ[u_out] = last; // Remove the subtree of u_out from the thread list except for // the case when old_rev_thread equals to v_in if (old_rev_thread != v_in) { _thread[old_rev_thread] = after; _rev_thread[after] = old_rev_thread; } // Update _rev_thread using the new _thread values for (int i = 0; i != int(_dirty_revs.size()); ++i) { int u = _dirty_revs[i]; _rev_thread[_thread[u]] = u; } // Update _pred, _pred_dir, _last_succ and _succ_num for the // stem nodes from u_out to u_in int tmp_sc = 0, tmp_ls = _last_succ[u_out]; for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) { _pred[u] = _pred[p]; _pred_dir[u] = -_pred_dir[p]; tmp_sc += _succ_num[u] - _succ_num[p]; _succ_num[u] = tmp_sc; _last_succ[p] = tmp_ls; } _pred[u_in] = in_arc; _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; _succ_num[u_in] = old_succ_num; } // Update _last_succ from v_in towards the root int up_limit_out = _last_succ[join] == v_in ? join : -1; int last_succ_out = _last_succ[u_out]; for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) { _last_succ[u] = last_succ_out; } // Update _last_succ from v_out towards the root if (join != old_rev_thread && v_in != old_rev_thread) { for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; u = _parent[u]) { _last_succ[u] = old_rev_thread; } } else if (last_succ_out != old_last_succ) { for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; u = _parent[u]) { _last_succ[u] = last_succ_out; } } // Update _succ_num from v_in to join for (int u = v_in; u != join; u = _parent[u]) { _succ_num[u] += old_succ_num; } // Update _succ_num from v_out to join for (int u = v_out; u != join; u = _parent[u]) { _succ_num[u] -= old_succ_num; } } // Update potentials in the subtree that has been moved void updatePotential() { Cost sigma = _pi[v_in] - _pi[u_in] - _pred_dir[u_in] * _cost[in_arc]; int end = _thread[_last_succ[u_in]]; for (int u = u_in; u != end; u = _thread[u]) { _pi[u] += sigma; } } // Heuristic initial pivots bool initialPivots() { Value curr, total = 0; std::vector supply_nodes, demand_nodes; for (int u = 0; u < _node_num; ++u) { curr = _supply[u]; if (curr > 0) { total += curr; supply_nodes.push_back(u); } else if (curr < 0) { demand_nodes.push_back(u); } } if (_sum_supply > 0) total -= _sum_supply; if (total <= 0) return true; IntVector arc_vector; if (_sum_supply >= 0) { if (supply_nodes.size() == 1 && demand_nodes.size() == 1) { // Perform a reverse graph search from the sink to the source std::vector reached(_node_num, false); Node s = supply_nodes[0], t = demand_nodes[0]; std::vector stack; reached[t] = true; stack.push_back(t); while (!stack.empty()) { Node u, v = stack.back(); stack.pop_back(); if (v == s) break; // for (InArcIt a(_graph, v); a != INVALID; ++a) { for (auto a : _graph.in_eids[v]) { if (reached[u = _graph.source(a)]) continue; int j = a; if (_cap[j] >= total) { arc_vector.push_back(j); reached[u] = true; stack.push_back(u); } } } } else { // Find the min. cost incoming arc for each demand node for (int i = 0; i != int(demand_nodes.size()); ++i) { Node v = demand_nodes[i]; Cost c, min_cost = std::numeric_limits::max(); Arc min_arc = INVALID; for (auto a : _graph.in_eids[v]) { // for (InArcIt a(_graph, v); a != INVALID; ++a) { c = _cost[a]; if (c < min_cost) { min_cost = c; min_arc = a; } } if (min_arc != INVALID) { arc_vector.push_back(min_arc); } } } } else { // Find the min. cost outgoing arc for each supply node for (Node u : supply_nodes) { Cost c, min_cost = std::numeric_limits::max(); Arc min_arc = INVALID; for (auto a : _graph.out_eids[u]) { c = _cost[a]; if (c < min_cost) { min_cost = c; min_arc = a; } } if (min_arc != INVALID) { arc_vector.push_back(min_arc); } } } // Perform heuristic initial pivots for (int i = 0; i != int(arc_vector.size()); ++i) { in_arc = arc_vector[i]; if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - _pi[_target[in_arc]]) >= 0) continue; findJoinNode(); bool change = findLeavingArc(); if (delta >= MAX) return false; changeFlow(change); if (change) { updateTreeStructure(); updatePotential(); } } return true; } // Execute the algorithm ProblemType start(PivotRule pivot_rule) { // Select the pivot rule implementation switch (pivot_rule) { case FIRST_ELIGIBLE: return start(); case BEST_ELIGIBLE: return start(); case BLOCK_SEARCH: return start(); case CANDIDATE_LIST: return start(); case ALTERING_LIST: return start(); } return INFEASIBLE; // avoid warning } template ProblemType start() { PivotRuleImpl pivot(*this); // Perform heuristic initial pivots if (!initialPivots()) return UNBOUNDED; // Execute the Network Simplex algorithm while (pivot.findEnteringArc()) { findJoinNode(); bool change = findLeavingArc(); if (delta >= MAX) return UNBOUNDED; changeFlow(change); if (change) { updateTreeStructure(); updatePotential(); } } // Check feasibility for (int e = _search_arc_num; e != _all_arc_num; ++e) { if (_flow[e] != 0) return INFEASIBLE; } // Transform the solution and the supply map to the original form if (_has_lower) { for (int i = 0; i != _arc_num; ++i) { Value c = _lower[i]; if (c != 0) { _flow[i] += c; _supply[_source[i]] += c; _supply[_target[i]] -= c; } } } // Shift potentials to meet the requirements of the GEQ/LEQ type // optimality conditions if (_sum_supply == 0) { if (_stype == GEQ) { Cost max_pot = -std::numeric_limits::max(); for (int i = 0; i != _node_num; ++i) { if (_pi[i] > max_pot) max_pot = _pi[i]; } if (max_pot > 0) { for (int i = 0; i != _node_num; ++i) _pi[i] -= max_pot; } } else { Cost min_pot = std::numeric_limits::max(); for (int i = 0; i != _node_num; ++i) { if (_pi[i] < min_pot) min_pot = _pi[i]; } if (min_pot < 0) { for (int i = 0; i != _node_num; ++i) _pi[i] -= min_pot; } } } return OPTIMAL; } }; // class NetworkSimplex template struct mcf_graph_ns { struct Digraph { const int V; int E; std::vector> in_eids, out_eids; std::vector> arcs; Digraph(int V = 0) : V(V), E(0), in_eids(V), out_eids(V){}; int add_edge(int s, int t) { assert(0 <= s and s < V); assert(0 <= t and t < V); in_eids[t].push_back(E), out_eids[s].push_back(E), arcs.emplace_back(s, t), E++; return E - 1; } int countNodes() const noexcept { return V; } int countArcs() const noexcept { return E; } int source(int arcid) const { return arcs[arcid].first; } int target(int arcid) const { return arcs[arcid].second; } }; struct edge { int eid; int from, to; Capacity lo, hi; Weight weight; }; int n; std::vector bs; bool infeasible; std::vector Edges; mcf_graph_ns(int V = 0) : n(V), bs(V), infeasible(false) {} int add_edge(int from, int to, Capacity lower, Capacity upper, Weight weight) { assert(from >= 0 and from < n); assert(to >= 0 and to < n); int idnow = Edges.size(); Edges.push_back({idnow, from, to, lower, upper, weight}); return idnow; } void set_supply(int v, Capacity b) { assert(v >= 0 and v < n); bs[v] = b; } std::vector flow; std::vector potential; template [[nodiscard]] RetVal solve() { std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count()); std::vector vid(n), eid(Edges.size()); std::iota(vid.begin(), vid.end(), 0); std::shuffle(vid.begin(), vid.end(), rng); std::iota(eid.begin(), eid.end(), 0); std::shuffle(eid.begin(), eid.end(), rng); flow.clear(); potential.clear(); Digraph graph(n + 1); std::vector supplies(graph.countNodes()); std::vector lowers(Edges.size()); std::vector uppers(Edges.size()); std::vector weights(Edges.size()); for (int i = 0; i < n; i++) supplies[vid[i]] = bs[i]; for (auto i : eid) { const auto &e = Edges[i]; int arc = graph.add_edge(vid[e.from], vid[e.to]); lowers[arc] = e.lo; uppers[arc] = e.hi; weights[arc] = e.weight; } NetworkSimplex ns(graph); auto status = ns.supplyMap(supplies).costMap(weights).lowerMap(lowers).upperMap(uppers).run(decltype(ns)::ALTERING_LIST); if (status == decltype(ns)::INFEASIBLE) { return infeasible = true, 0; } else { flow.resize(Edges.size()); potential.resize(n); for (int i = 0; i < int(Edges.size()); i++) flow[eid[i]] = ns.flow(i); for (int i = 0; i < n; i++) potential[i] = ns.potential(vid[i]); return ns.template totalCost(); } } }; int main() { int M, N; cin >> M >> N; vector A(M), B(N); cin >> A >> B; sort(A.begin(), A.end()); sort(B.begin(), B.end()); // vector cnt(N); // vector ans(M + 1); // vector idx(M); // REP(i, M) { // int j = lower_bound(B.begin(), B.end(), A[i]) - B.begin(); // if (j >= N) j--; // if (j and abs(B[j - 1] - A[i]) < abs(B[j] - A[i])) j--; // ans[M] += abs(B[j] - A[i]); // cnt[j]++; // } // int r = *max(ALL(cnt)); // FOR(i, r, M) ans[i] = ans[M]; // while (r > 0) { // vector muri; // vector free_js; // } // FOR(k, 1, M + 1) cout << ans[k] << '\n'; vector xs = A; xs.insert(xs.end(), B.begin(), B.end()); xs = sort_unique(xs); for (auto &x : A) x = lower_bound(xs.begin(), xs.end(), x) - xs.begin(); for (auto &x : B) x = lower_bound(xs.begin(), xs.end(), x) - xs.begin(); FOR(k, 1, M + 1) { mcf_graph_ns graph(xs.size() + 1); for (auto i : A) graph.set_supply(i, 1); for (auto i : B) graph.add_edge(i, xs.size(), 0, k, 0); REP(j, xs.size() - 1) { graph.add_edge(j, j + 1, 0, M, xs[j + 1] - xs[j]); graph.add_edge(j + 1, j, 0, M, xs[j + 1] - xs[j]); } graph.set_supply(xs.size(), -M); cout << graph.solve() << '\n'; } }