#include using namespace std; // #include // using namespace atcoder; // #define int long long #define rep(i, n) for (int i = (int)(0); i < (int)(n); ++i) #define reps(i, n) for (int i = (int)(1); i <= (int)(n); ++i) #define rrep(i, n) for (int i = ((int)(n)-1); i >= 0; i--) #define rreps(i, n) for (int i = ((int)(n)); i > 0; i--) #define irep(i, m, n) for (int i = (int)(m); i < (int)(n); ++i) #define ireps(i, m, n) for (int i = (int)(m); i <= (int)(n); ++i) #define irreps(i, m, n) for (int i = ((int)(n)-1); i > (int)(m); ++i) #define SORT(v, n) sort(v, v + n); #define REVERSE(v, n) reverse(v, v+n); #define vsort(v) sort(v.begin(), v.end()); #define all(v) v.begin(), v.end() #define mp(n, m) make_pair(n, m); #define cinline(n) getline(cin,n); #define replace_all(s, b, a) replace(s.begin(),s.end(), b, a); #define PI (acos(-1)) #define FILL(v, n, x) fill(v, v + n, x); #define sz(x) (int)(x.size()) using ll = long long; using vi = vector; using vvi = vector; using vll = vector; using vvll = vector; using pii = pair; using pll = pair; using vs = vector; using vpll = vector>; using vtp = vector>; using vb = vector; using ld = long double; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template using vc=vector; template using vvc=vc>; const ll INF = 1e9+10; // const ll MOD = 1e9+7; const ll MOD = 998244353; const ll LINF = 1e18; #define mat vector> /// 行列積 mat mat_mul(mat &a, mat &b) { mat res(a.size(), vector(b[0].size())); for (int i = 0; i < a.size(); i++) { for (int j = 0; j < b[0].size(); j++) { for (int k = 0; k < b.size(); k++) { (res[i][j] += a[i][k] * b[k][j]) %= MOD; } } } return res; } /// 行列累乗 mat mat_pow(mat a, long long n) { mat res(a.size(), vector(a.size())); // 単位行列で初期化 for (int i = 0; i < a.size(); i++) res[i][i] = 1; // 繰り返し二乗法 while (n > 0) { if (n & 1) res = mat_mul(a, res); a = mat_mul(a, a); n >>= 1; } return res; } // n文字列の長さ k倍を求める // a,b,cの3種類 // a->b->cの並び順でその個数がk倍であるような文字列の個数 // dp[n][i][j][k]:=n文字で部分文字列a,ab,abcの数がi,j,k個である通り数 // i,j,kはn個保持する必要はなく、%Kを保持すれば良いのでn*k^3 // a:dp[n][(i+1)%K][j][k]=dp[n-1][i][j][k]+1 // b:dp[n][i][(j+i)%K][k]=dp[n-1][i][j][k] // c:dp[n][i][j][(k+j)%K]=dp[n-1][i][j][k] // signed main() { cin.tie( 0 ); ios::sync_with_stdio( false ); ll n,k; cin>>n>>k; mat m(k*k*k,vc(k*k*k)); rep(i,k) rep(j,k) rep(l,k){ // k進数として見る // k^2 k^1 k^0 .. 左から順にh,m,rの個数に対応する m[(i+1)%k*k*k+j*k+l][i*k*k+j*k+l]++; // (i*k*k+j*k+lの状態から)末尾にhを追加 m[i*k*k+(j+i)%k*k+l][i*k*k+j*k+l]++; // 末尾にmを追加 m[i*k*k+j*k+(l+j)%k][i*k*k+j*k+l]++; // 末尾にrを追加 } m = mat_pow(m,n); mat v = mat(k*k*k,vc(k*k*k)); v[0][0]=1; auto res = mat_mul(m,v); ll ans=0; rep(i,k) rep(j,k) (ans+=res[i*k*k+j*k][0])%=MOD; cout<