#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define REP(i,a,b) for(int i=a;i<(int)b;i++) #define rep(i,n) REP(i,0,n) #define all(c) (c).begin(), (c).end() #define zero(a) memset(a, 0, sizeof a) #define minus(a) memset(a, -1, sizeof a) #define minimize(a, x) a = std::min(a, x) #define maximize(a, x) a = std::max(a, x) int const inf = 1<<29; typedef __int128_t ll; #include namespace math { namespace integer { template value_type mod_mul(value_type x, value_type k, value_type m) { if(k == 0) { return 0; } if(k % 2 == 0) { return mod_mul((x+x) % m, k/2, m); } else { return (x + mod_mul(x, k-1, m)) % m; } } template value_type mod_pow(value_type x, value_type n, value_type mod) { if(n == 0) { return 1; } if(n % 2 == 0) { return mod_pow(mod_mul(x, x, mod) % mod, n / 2, mod); } else { return mod_mul(x, mod_pow(x, n - 1, mod), mod); } } }} using namespace math::integer; namespace math { namespace prime { namespace detail { template bool check_small_factors(const I& n) { static const uint32_t small_factors1[] = { 3u, 5u, 7u, 11u, 13u, 17u, 19u, 23u }; static const uint32_t pp1 = 223092870u; uint32_t m1 = n % pp1; for(unsigned i = 0; i < sizeof(small_factors1) / sizeof(small_factors1[0]); ++i) { if(m1 % small_factors1[i] == 0) { return false; } } static const uint32_t small_factors2[] = { 29u, 31u, 37u, 41u, 43u, 47u }; static const uint32_t pp2 = 2756205443u; m1 = n % pp2; for(unsigned i = 0; i < sizeof(small_factors2) / sizeof(small_factors2[0]); ++i) { if(m1 % small_factors2[i] == 0) { return false; } } static const uint32_t small_factors3[] = { 53u, 59u, 61u, 67u, 71u }; static const uint32_t pp3 = 907383479u; m1 = n % pp3; for(unsigned i = 0; i < sizeof(small_factors3) / sizeof(small_factors3[0]); ++i) { if(m1 % small_factors3[i] == 0) { return false; } } static const uint32_t small_factors4[] = { 73u, 79u, 83u, 89u, 97u }; static const uint32_t pp4 = 4132280413u; m1 = n % pp4; for(unsigned i = 0; i < sizeof(small_factors4) / sizeof(small_factors4[0]); ++i) { if(m1 % small_factors4[i] == 0) { return false; } } static const uint32_t small_factors5[6][4] = { { 101u, 103u, 107u, 109u }, { 113u, 127u, 131u, 137u }, { 139u, 149u, 151u, 157u }, { 163u, 167u, 173u, 179u }, { 181u, 191u, 193u, 197u }, { 199u, 211u, 223u, 227u } }; static const uint32_t pp5[6] = { 121330189u, 113u * 127u * 131u * 137u, 139u * 149u * 151u * 157u, 163u * 167u * 173u * 179u, 181u * 191u * 193u * 197u, 199u * 211u * 223u * 227u }; for(unsigned k = 0; k < sizeof(pp5) / sizeof(*pp5); ++k) { m1 = n % pp5[k]; for(unsigned i = 0; i < 4; ++i) { if(m1 % small_factors5[k][i] == 0) { return false; } } } return true; } inline bool is_small_prime(unsigned n) { static const unsigned char p[] = { 3u, 5u, 7u, 11u, 13u, 17u, 19u, 23u, 29u, 31u, 37u, 41u, 43u, 47u, 53u, 59u, 61u, 67u, 71u, 73u, 79u, 83u, 89u, 97u, 101u, 103u, 107u, 109u, 113u, 127u, 131u, 137u, 139u, 149u, 151u, 157u, 163u, 167u, 173u, 179u, 181u, 191u, 193u, 197u, 199u, 211u, 223u, 227u }; for(unsigned i = 0; i < sizeof(p) / sizeof(*p); ++i) { if(n == p[i]) { return true; } } return false; } template bool cast_to_unsigned(I n) { return static_cast(n % std::numeric_limits::max()); } struct xor128 { unsigned x,y,z,w; xor128(): x(89165727), y(157892372), z(7777777), w(757328) {} unsigned next() { unsigned t=x^(x<<11); x=y;y=z;z=w; return w=w^(w>>19)^t^(t>>8); } unsigned next(unsigned k) { return next()%k; } } rndgen; } template bool miller_rabin_test(const I& n, unsigned trials, Engine& gen) { typedef I number_type; if((n % 2) == 0) { return false; } if(n <= 227) { return detail::is_small_prime(detail::cast_to_unsigned(n)); } if(!detail::check_small_factors(n)) { return false; } number_type nm1 = n - 1; // Fermat test number_type q(228), x, y; x = mod_pow(q, nm1, n); if(x != 1u) { return false; } q = n - 1; while(!(q & 1)) q >>= 1; std::uniform_int_distribution dist(1, n - 2); // Execute miller-rabin-test trials: for(unsigned i = 0; i < trials; ++i) { x = (number_type)dist(gen); number_type t = q; y = mod_pow(x, t, n); while(t != n-1 && y != 1 && y != n-1) { y = mod_mul(y, y, n); t <<= 1; } if(y != n-1 && (t & 1) == 0) { return false; } } return true; // probably prime } template bool suspect(const I& a, I s, I d, I n) { ll x = mod_pow(a, d, n); if (x == 1) return true; for(int r = 0; r < s; ++r) { if(x == n - 1) return true; x = mod_mul(x, x, n); } return false; } bool miller_rabin_test2(ll n) { if(n <= 1 || (n > 2 && n % 2 == 0)) { return false; } vector test = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, -1 }; ll d = n - 1, s = 0; while(d % 2 == 0) { s ++; d /= 2; } for(int i = 0; test[i] < n && test[i] != -1; ++i) if (!suspect((ll)test[i], s, d, n)) return false; return true; } template bool miller_rabin_test(const I& n, int type = 0) { if(type == 0) { return miller_rabin_test2(n); } else { static std::mt19937 gen; return miller_rabin_test(n, 25, gen); } } }} map mp = { {4,3}, {6,5}, {8,7}, {9,7}, {10,7}, {12,11}, {14,13}, {15,7}, {16,7}, {18,8}, {20,19}, {21,19}, {22,7}, {24,23}, {25,23}, }; int main() { string s; cin >> s; ll N = 0; rep(i, s.size()) { N = N * 10; N = N + (s[i] - '0'); } if(mp.find(N) != mp.end()) { cout << mp[N] << endl; exit(0); } if((N % 8 == 1) && math::prime::miller_rabin_test(N - 8)) { cout << 14 << endl; } else { cout << 8 << endl; } return 0; }