#pragma region Macros #include #define rep(i, n) for(int(i) = 0; (i) < (n); (i)++) #define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++) #define ALL(v) (v).begin(), (v).end() #define LLA(v) (v).rbegin(), (v).rend() #define SZ(v) (int)(v).size() #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define DOUBLE(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define STRING(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VEC2(type, name, height, width) \ vector> name(height, vector(width)); \ read(name) using namespace std; using ll = long long; using pii = pair; using pll = pair; using Graph = vector>; template struct edge { int from, to; T cost; edge(int f, int t, T c) : from(f), to(t), cost(c) {} }; template using WGraph = vector>>; const int INF = 1 << 30; const ll LINF = 1LL << 60; const int MOD = 1e9 + 7; const char newl = '\n'; template inline vector make_vec(size_t a, T val) { return vector(a, val); } template inline auto make_vec(size_t a, Ts... ts) { return vector(a, make_vec(ts...)); } void read() {} template inline void read(T &a) { cin >> a; } template inline void read(pair &p) { read(p.first), read(p.second); } template inline void read(vector &v) { for(auto &&a : v) read(a); } template inline void read(Head &head, Tail &...tail) { read(head), read(tail...); } template void write(const T &a) { cout << a << '\n'; } template void write(const vector &a) { for(int i = 0; i < a.size(); i++) cout << a[i] << (i + 1 == a.size() ? '\n' : ' '); } template void write(const Head &head, const Tail &...tail) { cout << head << ' '; write(tail...); } template void writel(const T &a) { cout << a << '\n'; } template void writel(const vector &a) { for(int i = 0; i < a.size(); i++) cout << a[i] << '\n'; } template void writel(const Head &head, const Tail &...tail) { cout << head << '\n'; write(tail...); } template auto sum(const vector &a) { return accumulate(ALL(a), T(0)); } template auto min(const vector &a) { return *min_element(ALL(a)); } template auto max(const vector &a) { return *max_element(ALL(a)); } template inline void chmax(T &a, T b) { (a < b ? a = b : a); } template inline void chmin(T &a, T b) { (a > b ? a = b : a); } struct IO { IO() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); } } io; #pragma endregion // LazySegmentTree template class LazySegTree { private: using F = function; using G = function; using H = function; size_t n; const F f; const G g; const H h; const Monoid e; const Operator oe; vector node; vector lazy; // ノードの評価 inline Monoid eval(int k) { return lazy[k] == oe ? node[k] : g(node[k], lazy[k]); } // 子に伝播 inline void propagate(int k) { if(lazy[k] != oe) { lazy[2 * k] = h(lazy[2 * k], lazy[k]); lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]); node[k] = eval(k); lazy[k] = oe; } } // 上から伝播 inline void thrust(int k) { for(int i = 31 - __builtin_clz(k); i > 0; i--) { if((k >> i) >= 1) propagate(k >> i); } } // 下から再計算 inline void recalc(int k) { while(k > 1) { k >>= 1; node[k] = f(eval(2 * k), eval(2 * k + 1)); } } public: LazySegTree(int sz, const F _f, const G _g, const H _h, const Monoid &_e, const Operator &_oe) : f(_f), g(_g), h(_h), e(_e), oe(_oe) { n = 1; while(n < sz) { n <<= 1; } node.resize(2 * n, e); lazy.resize(2 * n, oe); } LazySegTree(const vector &v, const F _f, const G _g, const H _h, const Monoid &_e, const Operator &_oe) : f(_f), g(_g), h(_h), e(_e), oe(_oe) { int sz = v.size(); n = 1; while(n < sz) { n <<= 1; } node.resize(2 * n, e); lazy.resize(2 * n, oe); for(int i = 0; i < sz; i++) set(i, v[i]); build(); } void set(int k, const Monoid &x) { node[k + n] = x; } void build() { for(int i = n - 1; i > 0; i--) node[i] = f(node[2 * i], node[2 * i + 1]); } // [L,R)区間作用 void update(int L, int R, Operator x) { L += n, R += n; int L0 = L / (L & -L), R0 = R / (R & -R) - 1; thrust(L0); thrust(R0); while(L < R) { if(L & 1) { lazy[L] = h(x, lazy[L]); L++; } if(R & 1) { R--; lazy[R] = h(lazy[R], x); } L >>= 1; R >>= 1; } recalc(L0); recalc(R0); } // [L,R)区間取得 Monoid query(int L, int R) { L += n, R += n; thrust(L / (L & -L)); thrust(R / (R & -R) - 1); Monoid vl = e, vr = e; while(L < R) { if(L & 1) { vl = f(vl, eval(L)); L++; } if(R & 1) { R--; vr = f(eval(R), vr); } L >>= 1; R >>= 1; } return f(vl, vr); } Monoid at(int k) { return query(k, k + 1); } }; struct S { ll num, sum, sqsum; }; using F = ll; S op(S a, S b) { return S{a.num + b.num, a.sum + b.sum, a.sqsum + b.sqsum}; } S mapping(S a, F f) { return S{a.num, a.sum + f * a.num, a.sqsum + f * f * a.num + a.sum * 2 * f}; }; F composition(F f, F g) { return f + g; } S e() { return S{1, 0, 0}; } F id() { return 0; } int main() { INT(n); VEC(ll, a, n); LazySegTree segtree(n, op, mapping, composition, e(), id()); rep(i, n) segtree.set(i, S{1, a[i], a[i] * a[i]}); segtree.build(); INT(Q); rep(i, Q) { INT(q); if(q == 1) { INT(l, r); LL(x); l--; segtree.update(l, r, x); } else { INT(l, r); l--; write(segtree.query(l, r).sqsum); } } }